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ABSTRACT

The article is concerned with a mathematical modeling which can improve performances of PDE-based 

restoration models. Most PDE-based restoration models tend to lose fine structures due to certain degrees of 

nonphysical dissipation. Sources of such an undesirable dissipation are analyzed for total variation-based 

restoration models. Based on the analysis, the so-called equalized net diffusion (END) modeling is suggested in 

order for PDE-based restoration models to significantly reduce nonphysical dissipation. It has been numerically 

verified that the END-incorporated models can preserve and recover fine structures satisfactorily, outperforming 

the basic models for both quality and efficiency. Various numerical examples are shown to demonstrate 

effectiveness of the END modeling.
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Ⅰ. INTRODUCTION

For diverse image-related applications, image 

restoration is an important image processing (IP) 

step and is often necessary as a pre-processing 

for other imaging tasks such as segmentation and 

compression. Thus image restoration has occupied 

a peculiar position in IP, computer graphics, and 

their applications
[2,13,19,20,21,24,27]

.

There have been various partial differential 

equation (PDE)-based restoration models such as 

the Perona-Malik model
[25]

, the total variation 

(TV) model
[18,26]

, and color restoration models
[3,10, 

15,17,28]
. These PDE-based models have been 

extensively studied to answer fundamental 

questions in image restoration and have allowed 

researchers and practitioners not only to introduce 

new mathematical models but also to improve 

traditional algorithms
[1,4,9,22,30]

.

However, most PDE-based restoration models 

and their numerical realizations show a common 

drawback: loss of fine structures. Such an 

undesirable loss is due to an excessive numerical 

dissipation introduced particularly on regions 

where the image content changes rapidly such as 

on edges and textures. Thus the reduction of 

nonphysical dissipation becomes an interesting 

problem in image restoration, requiring challenges 

and innovative ideas. Although advanced models 

have been recently suggested for the preservation 

of fine structures
[19,23]

, more effective strategies 

have yet to be developed.

In this article, we will first analyze sources of 

nonphysical dissipation for popular PDE-based 

restoration models. Based on the analysis, we will 

study the so-called equalized net diffusion (END) 

modeling for PDE-based restoration models, first 

introduced in[14]. Here we will study mathematical 
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properties of the END in detail and suggest a 

heuristic method for parameter choices. It has 

been numerically verified that with the new 

parameters, the END modeling can reduce 

nonphysical dissipation significantly and more 

effectively for most of natural images we have 

tested.

The article is organized as follows. In the next 

section, we review TV-based models along with 

recent studies for the reduction of nonphysical 

dissipation. Section III analyzes sources of 

nonphysical dissipation for PDE-based models: 

nonphysical dissipation occurs more excessively at 

pixels where the diffusion term evaluates larger in 

modulus. In Section IV, we introduce the END 

modeling which tries to equalize the net diffusion 

over a wide range of image frequencies. In the 

same section, a linearized numerical procedure is 

suggested for an efficient computation of END 

incorporated restoration models. Section V 

discusses a strategy for the choice of algorithm 

parameters introduced for the END modeling. In 

Section VI, we present numerical results to show 

effectiveness of the END modeling applied to two 

basic TV based models. The last section 

summarizes our experiments.

Ⅱ. PRELIMINARIES 

2.1 Total variation (TV)-based models
Let   be the observed image of the form

  (1) 

where  is a desired image and   denotes noise 

or the residual. A common mathematical 

denoising technique is to minimize the total 

variation (TV):

  arg min
∈     


  , (2)

where   is the image domain,   is a 

nonnegative constraint constant, ⋅  denotes the 

  -norm, and ⋅  is the bounded variation 

(BV) seminorm defined as

 


∇ x .

Apply the variational calculus [29, x3.3] to 

transform the minimization problem (2) into an 

equivalent differential equation, called the 

Euler-Lagrange equation of (2):

∇⋅∇
∇  (3)

Note that the restored image becomes closer to  

as  grows. For a convenient numerical 

simulation of (3), one may parameterize the 

energy descent direction by an artificial time . 

Then the resulting equation reads the 

(evolutionary) TV model:   

   


∇⋅∇

∇    (TV) (4)

where the no-flux boundary condition can be 

adopted, for simplicity, and ⋅     .

In the literature, the constraint parameter  is 

often set as a constant, as suggested by 

Rudin-Osher-Fatemi
[26]

. In order to find the 

parameter, the authors merely multiplied (4) by 

  and averaged the resulting equation over the 

whole image domain. Then, for its steady state,

   



 



 x . (5)

where   is the noise variance.

Although the TV model pertains certain 

attractive mathematical properties in image 

restoration, its numerical realization may introduce 

a great deal of numerical dissipation particularly 

near fine structures. It is also known that the TV 

model tends to transform the image into a 

collection of locally constant portions, which is 

called the staircasing. As an antistaircasing 

approach, Marquina and Osher
[18]

 introduced the 

improved total variation (ITV) model      




 ∇∇⋅∇

∇  ∇ (ITV) (6)

The ITV model can be derived by scaling the 

stationary TV model (3) by a factor of ∇ and 

then introducing the time parameterization. Note that 

since ∇ vanishes only in flat regions, the steady 
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states of both TV and ITV models are analytically 

the same. The scaling can suppress the staircasing 

effectively, as claimed in [24, §11.3].

In order to prevent the denominator ∇  in (4) 

and (6) from approaching zero, it can be 

approximated as                  

∇≈ ∇    ,          for some 

  small. As shown in [15], [16], such 

regularization can introduce larger nonphysical 

dissipation to destroy fine structures. To reduce the 

nonphysical dissipation, one may consider the 

following non-convex (NC) model:




 ∇∇⋅∇

∇    (NC) (7)

where ∈  and  x ≥ . See [15], [16] 

for effective strategies for the choice of  and  , a 

non-standard numerical procedure, and its stability 

analysis. The NC model shares the same diffusion 

part as the ITV model when  . As numerically 

verified in Section VI below, the NC model can 

preserve fine structures better than the ITV model. 

A variant of the NC model has been successfully 

applied as an edge-forming method for image 

zooming of arbitrary magnification factors
[6,7]

.

Remark. The divergence term in (7),  

∇⋅∇
∇  , is corresponding to the 

following minimization  

min




∇  x ,

of which the object is not convex for    . (The 

model (7) has been named from the non-convexity.) 

It should be noticed that the NC model has a close 

relationship with the Perona-Malik model
[25]

.

2.2. Recent studies for the reduction of 
nonphysical dissipation

For the TV-based image restoration, the 

staircasing effect is now well understood and 

relatively easy to handle compared with nonphysical 

dissipation. Here we review briefly two recent 

studies for the reduction of nonphysical 

dissipation
[19,23]

.

As Meyer
[19] 

analyzed, the   -norm applied to 

the residual   in the TV model (4) is not 

sensitive enough to distinguish the noise from 

textures. As a consequence, the residual can easily 

contain not only the noise but also fine structures 

and therefore the restored image   turns out to be 

erroneous and blurry. To reduce the blur associated 

with the TV model, Meyer suggested the following 

modified variational problem:

  arg min
∈   

     , (8)

where ⋅  denotes the norm in the Besov space 

∞
 ∞

; see [19, §1.13-1.15] for details. It has 

been observed that the Besov norm is able to 

distinguish between different textures; however, the 

model (7) is difficult to minimize using the 

Euler-Lagrange equation approach.

On the other hand, Osher et al.
[23]

 recently 

suggested an iterative refinement procedure:

∙Initialize:      .

∙For   ⋯ ; compute   as the 

minimizer of       the following model

 arg min
∈  


 

 (9)

 and update

       . (10)

The authors have proved that   converges 

monotonically in    to  , the noisy image, as 

→∞ . The mathematical analysis can be 

interpreted intuitively as follows: Wherever the 

residual is nonzero, the residual is incorporated, as 

a source, into the constraint term in (9) for the 

computation of a new minimizer   and therefore 

the minimization problem can result in the new 

minimizer nearer to   than previous iterates. 

However, it is not necessarily beneficial for a 

denoising algorithm to have such a property 

(convergence to  ), because the iterates   can get 

noisier as  grows. The iterative refinement may 
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restore not only fine structures but also the noise[23].

Ⅲ. DISSIPATION ANALYSIS 

This section analyzes sources of excessive 

nonphysical dissipation, in particular near fine 

structures, for PDE-based restoration models. We 

will momentarily assume that the given image   

involves no noise, i.e.,   ≡   and 

  ≡  .

Most PDE-based restoration models, including the 

TV (4), the ITV (6), the Perona-Malik model
[25]

, and 

the motion by mean curvature, can be formulated as



      , (11)

where   is a (nonlinear) diffusion operator and   

denotes a nonnegative constraint term. Then it 

follows from (1) and (11) that the residual equation 

becomes



   . (12)

Thus, since      , the residual at a positive 

time  ,  , remains zero in regions where 

     for  ≤    , while it becomes 

nonzero elsewhere. 

For the TV model (4), for example, the residual 

equation reads




 ∇⋅∇

∇  . (13)

One can see from (13) that the residual of the TV 

model

becomes positive or negative at pixels where the 

image is

concave down or concave up, respectively. Thus the 

solution   of the TV model must involve 

nonphysical dissipation wherever its curvature is 

nonzero. Furthermore, we can see that the TV model 

(4) diffuses the image more actively as the local 

values of the curvature become larger in modulus. 

The above observation for the TV model can apply 

to general images and to the general model (11) as 

well:

The bigger the diffusion magnitude    is, the 

larger nonphysical dissipation the model (11) can 

insinuate into the restored image  .

This is an undesirable property for restoration 

models and also the major source of nonphysical 

dissipation for PDE-based restoration models to lose 

fine structures.

Ⅳ. EQUALIZED NET DIFFUSION (END) 

This section begins with the introduction of the 

equalized net diffusion (END) modeling, which can 

yield a significant reduction of nonphysical 

dissipation near fine structures. Then, a linearized 

numerical procedure is suggested to solve the 

resulting models efficiently.

4.1. The END modeling
Recall that the ITV model (6) has been derived 

by scaling the TV model (4) by ∇  in order to 

suppress staircasing. Such a scaling idea can be 

applied further for the reduction of nonphysical 

dissipation. For example, as a scaling of (11), 

consider the following differential equation:



        , (14)

where   is a positive scaling function. Then the 

stationary state of (14) must be the same as that of 

(11). In the following, we will select appropriate 

functions for  ; the selected   in the right side 

may differ from that 

 

Fig. 1. The net diffusion function   in (17) for 
some choices of  and .

in the left side in order to optimize the reduction of 

nonphysical dissipation in image denoising.

In order to get insights for an appropriate scaling 
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function, consider the following differential equation 

of the form



    ,     (15)

where   is a function of the diffusion    and   

denotes a nonnegative constraint function. In this 

article, we will call   the net diffusion (ND) 

function. Associated with (15), the residual equation 

reads



   , (16)

We are interested in an ND function which does not 

introduce an excessive nonphysical dissipation near 

fine structures. Let us consider the following 

desirable properties of  :

(P1). Increasing function of  : The ND function   

must be increasing, because otherwise the 

noise may not be effectively removed. For the 

model (15), image denoising occurs in practice 

along with both   and     approaching 

zero.

(P2). Origin-symmetry: The origin-symmetry of   

implies that     , with which 

  becomes equally diffusive for both 

concavities (up and down).

(P3). Differentiability: The ND function does not 

have to be smooth; however, a rough function 

may result in a coarse surface in the restored 

image.

(P4). Boundedness and little variation: We will 

choose   to be bounded and vary little over 

a wide range of  ≥    , for some  . 

As one can see from the residual equation (16), 

this property will set a net diffusion that is 

bounded and similar in large neighborhoods of 

fine structures. With such a “diffusion 

equalization” property, the residual may not be 

excessive on fine structures. 

Let   satisfy the above properties, in particular 

(P4). Then we can set   to be independent of s or 

to be a constant. In a view point from the residual 

equation (16), such a setting must result in an 

equalized residual over a wide range of   and 

therefore over a wide range of frequency 

components in the image.

Now, we are ready to introduce an ND function 

  which satisfies all of the above properties:

  


 , (17)

where   and  are positive constants to be selected 

appropriately. It is easy to see that   is increasing, 

origin-symmetric, differentiable, and bounded as 

follows: for all  ,

  ≤ 


.

See Figure 1 for the ND function   with a certain 

choices of   and . It is not difficult to see that for 

a fixed  ,    ,  approaches ± , as    

grows. Thus, for a large   (and ), we have 

  ≈   for a wide range of    .

The ND function suggested in (17) has been 

motivated from an effort to find a variable 

parameter for the TV model (4). As an alternative to 

(5), one can get a variable parameter   x by 

averaging locally:

  
x

x
 

x
 x .

where x  is a neighborhood of x  and x  denotes 

the local noise variance measured over x . Then, the 

right side of the above equation can be 

approximated as

x≈x

  x⋅x , (18)

where ⋅x  denotes a local average over x . Thus 

the TV model (4), when its stationary equation is 

scaled by x  and regularized by a constant 

   , can be rewritten as 




x


 x


x , (19)

It is clear to see that the net diffusion of the above 

model is in the form of (17). The suggested ND 

function (17) is our choice of function which 

satisfies all the desirable properties (P1)~(P4); it will 
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be interesting to find more effective ND function.

The equation (15) will be called an equalized net 

diffusion (END)-incorporated model when it 

involves the ND function in (17):



  


    . (END) (20)

where    is a diffusion operator and   is a 

function of x. For the selection of   and , see 

(26) and (27) below. 

Note that the END function N in (17) also 

satisfies the

following property:

              ≈  , for   small,

which implies that in smooth regions, the 

END-incorporated model (20) behaves similar (up to 

a scalar factor) to the basic restoration model (11).

Remark. A closely related work to (20) can be 

found from [8]. There the authors have suggested a 

time-stepping numerical procedure called the method 

of nonflat time evolution (MONTE), in which the 

timestep size is determined based on local image 

characteristics such as the curvature or the diffusion 

magnitude, in order to significantly reduce 

nonphysical dissipation and preserve fine structures 

satisfactorily. The END modeling shares 

mathematical foundations and applicability with the 

MONTE procedure. A considerable difference (in its 

numerical realization) comes from the choice of the 

constraint term. Performances of these two 

techniques will be compared and appear elsewhere 

along with mathematical analyses that address 

significance, roles, and various choices of the 

diffusion and constraint terms in diverse PDE-based 

image processing tasks
[5]

.

4.2. A linearized time-stepping procedure
In this subsection, we introduce an efficient 

time-stepping procedure for the END-incorporated 

model (20). Let   be the timestep size and 

   , ≥  . Define   ⋅  . For a 

simpler presentation, we will exemplify the diffusion 

operator of the ITV model, i.e.,

 ∇∇⋅∇
∇  . (21)

For      and     , let


  ∇

 






∇




 




, (22) 

where 


 is the half-step central 

difference operator for the gradient ∇  and  

∇ 
   denotes a numerical approximation of 

gradient magnitude ∇   such as the (standard) 

second-order central scheme. Letting 

    
   

  
, we define


 

 






. (23) 

Note that 
 

,     , are tri-diagonal 

matrices. Set

    
 

 
. Then, an incomplete 

(linearized) Crank-Nicolson scheme for (20) reads


   

  
  

   . (24)

One can solve the linear system (24) by applying 

an iterative algebraic solver. However, for an 

efficiency reason, we employ the alternating 

direction implicit (ADI) time-stepping procedure 

[11], [12] for (24):

  




   











    





(25)

where   is an intermediate solution and   denotes 

the identity matrix. We will call (25) the 

Crank-Nicolson ADI (CN-ADI) algorithm.

Ⅴ. CHOICES FOR   AND    

For the END-incorporated model (20), we have 
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introduced two extra parameters:   and . In this 

section, we present a guideline for the automatic 

choice of these two parameters. In order to carry out 

a systematic analysis, we have selected a group of 

images, which are scaled to have values between   

and   for all numerical experiments. The parameter 

choices hereafter in this article is based on such a 

scaling and the use of CN-ADI (25).

Each of selected images is perturbed by Gaussian 

noise of various levels; each of noisy images has 

been denoised many times, with diverse choices of 

the parameters, to find the best restored image. 

From the experiment, a useful relationship between 

  and   has been found; we may determine the 

parameter   (on each time level) in such a way 

that for given  , the arithmetic average of 

   becomes   over the whole domain, 

i.e.,

   






 




  




 

 

 






 

(26) 

where   and   denote the number of pixels in 

the image in the horizontal and vertical directions, 

respectively. As we have observed earlier,   must 

be large enough (when   is fixed or (26) holds) 

to equalize the net diffusion over a wide range of 

the diffusion   . However, it cannot be set 

too large. In particular, when the observed image 

has a high noise level and the desired image is 

relatively smooth, most high frequency components 

in the image must come from

the noise. In the case, it can be better to allow the 

END-incorporated model to diffuse higher frequency 

components more actively by setting the parameter 

  smaller. We will consider a strategy for the 

choice of   for relatively smooth images as shown 

in Figure 2.

Let   be the arithmetic average of the absolute 

diffusion of the noisy image      . It has 

been found from the experiment that for the data set 

  obtained from the same image with 

different noise levels, log  reveals a linear 

dependence on log , as shown in Figure 3. A 

regression analysis is applied, for the model

log     log .  

to found     and     . Thus 

one can choose   as follows:

  ⋅
 

. (27)

With the aforementioned scaling, i.e., ∈  , the 

average diffusion   turns out to have values 

between   and   for most images of small to 

reasonable noise levels. This implies that for most 

cases,   can be selected between   and  , 

with its value becoming smaller for larger  . The 

strategy in (27) has been developed for relatively 

smooth images. For texture images, the parameters 

must be chosen larger as the texture becomes more 

delicate. Unfortunately, we could not find any useful 

patterns from the data of parameters which produce 

best restored images. Only the useful guideline is 

that the best performing   can be chosen between 

  and  , with the parameter being near   

for lower noise levels.

Ⅵ. NUMERICAL EXPERIMENTS   

In this section, we present numerical results and 

show

effectiveness of the END modeling (20) by 

comparing the peak signal-to-noise ratio (PSNR) for 

the following four models: ITV (6), NC (7), 

END-incorporated ITV (E-ITV), and 

END-incorporated NC (E-NC). The parameter  is 

chosen as in (26) for all cases. For the choice of 

parameter  , we apply the strategy in (27) for 

relatively smooth images; for texture images, the 

choices of   will be indicated in figure captions. 

The constraint term   is set dynamically utilizing 

the method of texture-free residual 

parameterization
[15]

.

6.1. Relatively smooth images
In Table 1, we present a PSNR analysis for the 

relatively smooth images in Figure 2. For each of 
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the images, PSNRs are presented for a noisy image 

f and recovered images by four different models, as 

a distance from the original image. The integers in 

the parentheses indicate the number of CN-ADI 

iterations to reach the best restored image measured 

in PSNR. As one can see from the table, the 

END-incorporated models (E-ITV and E-NC) 

outperform the basic models (ITV and NC), while 

the NC diffusion models (NC and E-NC) improve 

the image quality over ITV-related models. Thus the 

E-NC model performs the best for all cases. Here it 

should be noticed that the NC model tends to take 

more iterations to reach its best image than the ITV 

model. However, this does not imply that the NC 

diffusion makes the denoising procedure slow down. 

For example, for the Fireworks image, four 

iterations of the NC model obtains an image of 

PSNR=29.9, which is much larger than that of the 

ITV model (26.5). It is safe to say that the NC 

diffusion just runs more steps to improve image 

quality in higher levels. The improvement by the 

END modeling looks less effective for the NC 

model than the ITV model. For example, for 

Fireworks, the END modeling makes the ITV model 

improve from 26.5 to 30.8 in PSNR, while it drives 

the NC model from 29.9 to 31.9. However, it does 

not mean that the END modeling may be ineffective 

for some basic models. It is simply because the NC 

model itself is able to produce images much better 

than the ITV model and as one can see from the 

table, the E-NC model restores images of similar 

(slightly better) qualities as the E-ITV model. One 

also should notice that the END-incorporated models 

produce their best restored images in 3-5 iterations. 

In particular, the E-NC model has never taken more 

than four iterations for all examples we have tested, 

including texture images to be presented in the next 

subsection. The END modeling improves not only 

image quality but also computational efficiency.

Figure 4 shows performances of the four 

restoration models applied to one of sample images 

in Figure 2, Chess. The original image in Figure 

4(a) is contaminated by a Gaussian noise of 

PSNR=24.0 as in Figure 4(b). The 

END-incorporated models have introduced 

considerable improvements over both ITV and NC 

(compared from visual content); see Table 1 for a 

PSNR comparison. In particular, as one can see 

from Figure 4(a) and Figure 4(f), the E-NC model 

can preserve and restore image details very 

successfully without introducing an observable blur, 

just in three CN-ADI iterations.

6.2. Texture images
For texture images, we select Train and Zebra 

from public domain.

Figure 5 contains numerical results for a Train 

image. The original image in Figure 5(a) is 

perturbed by a Gaussian noise of PSNR=24.3, as in 

Figure 5(b), and restored by the four models. The 

PSNRs (and iteration counts) for the restored images 

in Figures 5(c)-5(f) are respectively 23.2 (2), 25.3 

(11), 26.7 (3), and 27.0 (3). The iterates of the ITV 

model show PSNRs continuously decreasing as the 

iteration count grows; we just stopped in two 

iterations to get an image. As for relatively smooth
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Fig. 2. Sample images utilized for the analysis of an automatic choice of the parameter : (left to right and top to bottom) 
Bamboo, Chess, Elaine, Fireworks, Flowers, House, Lenna, and Ring.

Fig. 3. The log-log plot for   and  which produce the best restored images. The data points obtained from the same 

image (with different noise levels) are connected by line segments to show the linearity between log  and log .

Table. 1. A PSNR analysis for relatively smooth images. The integers in the parentheses indicate the number of CN-ADI 
iterations to reach the best restored image.

 ITV NC E-ITV E-NC

Bamboo 23.8 33.5 (8) 34.7 (5) 34.1 (5) 34.9 (3)

Chess 24.0 27.3 (5) 30.0 (4) 30.0 (4) 30.7 (3)

Elaine 25.2 33.3 (3) 33.6 (3) 33.7 (3) 33.7 (3)

Fireworks 26.3 26.5 (4)  29.9 (15) 30.8 (4) 31.9 (3)

Flowers 25.0 28.1 (3) 31.1 (8) 31.1 (5) 31.9 (3)

House 26.1 34.0 (5) 35.2 (4) 35.1 (4) 35.4 (3)

Lenna 29.6 32.8 (2) 35.6 (10) 35.7 (3) 36.3 (3)

Ring 27.4 33.5 (5) 36.4 (15) 35.9 (5) 37.0 (3)
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Chess: (a) The original image, (b) a noisy image contaminated by a Gaussian noise (PSNR=24.0), and restored images 
by (c) ITV, (d) NC, (e) E-ITV, and (f) E-NC.

images, the END-incorporated models have 

improved both image quality and computationally 

efficiency; they can preserve and restore the texture 

image satisfactorily in three CN-ADI iterations.

In Figure 6, in order to make a systematic 

comparison of the four models, we present the 

magnified residuals     , where   is 

the original image in Figure 5(a) and   is a restored 

image in Figures 5(c)-5(f). It is apparent that the 

basic models lose fine structures during the image 

restoration. On the other hand, the residuals from 

the END-incorporated models are much less 

structural.

In Figure 7, we show numerical results for a 

Zebra image in the same manner as in Figure 5. The 

noisy image contains a Gaussian noise of 

PSNR=24.8. The PSNRs (and iteration counts) in 

Figures 7(c)-7(f) are respectively 24.1 (5), 27.3 (5), 

28.9 (4), and 29.8 (3).We have observed magnified 

residuals to reach the same conclusion for the 

END-incorporated models as in the previous 

example. Compare Figure 7(f) with Figure 7(a); the 

E-NC model can restore fine structures in the 

texture image satisfactorily and efficiently.

In order to further investigate effectiveness of the 

END modeling, Figure 8 presents images of Zebra 

head each of which is taken from bottom left of the 

images in Figure 7. The images are in ×  

pixels and depicted without applying scaling of the 

word processing software. As one might be 

expected, the restored images by the basic models 

(ITV and NC) have lost fine structures to look 

blurry as shown in Figures 8(c) and 8(d). The 

E-ITV model restores an image of reasonably 

well-preserved fine structures, while it has a certain 

degree of noise left to the final image, Figures 8(e). 

www.dbpia.co.kr



한국통신학회논문지(J-KICS) '13-12 Vol.38x No.12

1008

(a) (b) (c)

(d) (e) (f)

Fig. 5. Train: (a) The original image, (b) a noisy image contaminated by a Gaussian noise (PSNR=24.3), and restored 
images by (c) ITV, (d) NC, (e) E-ITV, and (f) E-NC. Set  .

(a) (b)

On the other hand, the E-NC model is able to 

remove noise effectively preserving fine structures 

most satisfactorily. Look at the (back) ground in 

particular. There is no doubt that the E-NC model 

can achieve the largest PSNR value.

Ⅶ. CONCLUSIONS 

This article suggests a mathematical technique 

which modifies PDE-based restoration models to 

effectively control nonphysical dissipation. 

PDE-based models have a tendency of losing fine 

structures. We have analyzed sources of such an 

undesirable loss and have introduced the so-called 

equalized net diffusion (END) modeling, as a 

modification technique of basic PDE-based models. 

A linearized Crank-Nicolson alternating direction 

implicit (CN-ADI) numerical procedure has been 

applied to compute
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(c) (d)

Fig. 6. Magnified residuals , where  is the original image in Figure 5(a) and 
 is the restored image by (a) ITV, (b) NC, (c) E-ITV, and (d) E-NC.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Zebra: (a) The original image, (b) a noisy image contaminated by a Gaussian noise (PSNR=24.8), and restored 
images by (c) ITV, (d) NC, (e) E-ITV, and (f) E-NC. Set  .
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Zebra head in × pixels, taken from Figure 7: (a) The original image, (b) a noisy image contaminated by a 
Gaussian noise (PSNR=24.8), and restored images by (c) ITV, (d) NC, (e) E-ITV, and (f) E-NC.

the END-incorporated models efficiently. The 

parameters introduced in the END modeling have 

been analyzed for relatively smooth images. It has 

been numerically verified that END-incorporated 

models can restore fine structures satisfactorily in 

3-5 CN-ADI iterations. The END modeling has been 

proved to improve not only image quality but also 

computational efficiency, over basic PDE based 

restoration models.
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