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A New Approach to the Maximum Dynamic Range
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ABSTRACT

High order filters are usually realized by cascading second order stages. In this paper, a simple me-

thod of pole-zero pairing in the high order band-pass and band-reject filter realization of the elliptic functions is propo -

sed for the enhancement of overall dynamic range. Furthermore, the optimum sequence of the various biquads of

high-pass notch, low-pass notch and symmetrical notch etc., is developed for the elliptic band-pass and band-reject

filters.

I. INTRODUCTION

In the cascade realization of the band-pass
and band-reject high order elliptic filters, the
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given low-pass function of order n must be de-
composed into a number of biquads (for n even)
or into a first order function in addition to bi-
quads (for n odd) [1].

By using frequency transformation, for
n even case, a number of biquads in the low-
pass elliptic function change into the high-pass
notch (HPN) and the low-pass notch (LPN)
biquads in the high order band-pass (B-P) and
band-reject (B-R) elliptic filter realizations. For
the case of odd n, the first order section trans-
forms into a second-order B-P in the B-P case
and a second order symmetric notch in the B-R
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case, respectively [2].

The main advantage of the cascading techni-
que is the relatively simple relation between
the poles and zeros of the transfer function
Thus, a relatively
uncomplicated adjustment of the filter para-

and the network elements.

meters is possible which allows the network
elements to have under tolerances [12].

A. Band-Pass Type Elliptic Functions

As a consequence of the transformation
5% ”;’— , where w is the center fre-
quency and B is the band w1dth we have the
pole-zero location as shown in Fig. la as illu-
strated for n=12 band-pass elliptic function.
The upper half from the horizontal line inter-
secting w=1.5 is similar to the pole-zero pat-
tern of the low-pass function; and the lower
half is similar to the polezero pattern of the
high-pass function [2}.

Corresponding to each p; of a low-pass notch
function, there exists a pole p; of the identical
Q for a high-pass notch function.

The therefore,

be conducted as shown below

pole-zero pairing, should

_ (S ) (S—-ZF) for low-pass notch section
(S—P;) (S—PF, of Q (1a)

(S~ Z1) (§-—~ Z¥) for high-pass notch section
(S--P{) (S~ P") of identical Q; (1b)

For optimal sequencing, ¢, should accompany
t; so that a pair of biquads; one of low-pass notch
and the other of high-pass notch, forms a sub-
section in the cascade [1], [2].

B. Band-Reject Type Elliptic Functions

Using the transformation S-»

which is the inverse of the band-pass case, we
have the pole-zero pattern as shown in Fig. 1b.

By using the analogy, the technique which
results in the pairing and sequencing similar to
band-pass will be developed but the place of
low-pass notch function and high-pass notch
function is reversed [2].

The particular cascading sequence that results
in the transfer functions, from input to output,
having the flattest magnitude in band-pass and
the flattest at the bottom in the band-reject
will be developed for the elliptic filter realiza-
tion with reference to the Q of individual biquads.

Making use of the properties pertinent to
the elliptic function, a relatively simple method
of pole-zero pairing in the band-pass type and
the band-reject type will be developed to improve
the overall dynamic range of the realized filter

(51, [6].

II. HIGH ORDER BAND-PASS REALJ-
ZATION

Let us take the case of n=6 for illustrative
purpose. The sixth order elliptic low-pass func-
tion may be written as a product of three biquads
of different Q’s.

It has been proved [2] that the maximum

dynamic range the sequence will be ordered as

follows where @, <Q:< @,
T{S)==K t,(8) - 1h (S) -taf (2)
Q. Ql Qs

The biquad t,(s) of the moderate Q, is followed
by t,(s)of low Q and s S)of high Q. The biquad
t,(s) has the pole-zero pairing as shown in Fig.
2a.

In order to further enhance the dynamic
range we may distribute the gain K to individual
biquads as

T(S)~kyt,(S) -k 1y

Q: Q,

(S) -kst3 (S)
Q, (3)

Applying the low-pass to band-pass transfor-
251
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mation we obtain the band-pass function of n=
12. #;(s)in (3) yields a biquad couple ti(s) and
£ (s). of an identical Qi’. The component of the
biquad couple, viz., ti(s) is of the low-pass notch
9&LPN) type, and ¢t;(s) is of the high-pass notch
(HPN) type, respectively, and together they
exhibit the band-pass characteristics.

Tor(S) =

kot; (S)t](S) ki1 (SVT(S) -kots (S) 17 S)

[LPN[HPNJ[LPN]HPN][LPN]HPN] ()
Q: QL Qs

Each band-pass section is composed of LPN

first and HPN second because this will ensure that
strong out-of-band signals, especially high frequen-
cy ones, will be sufficiently attenuated before
reaching the second stage where they might
produce overloading or slew-rate limiting. Similar-
ly, it is usually recommended to place a band-
pass or high-pass notch section at the end of the
cascade [2], [4]. This will help to prevent inter-
nally generated low-frequency noise from ap-
pearing at the filter output. If the odd function
is given, there appears only one second-order band-
pass function< S”’|Sa§1 i )and it has the moderate
band-pass characteristics, therefore, second-order
band-pass function is placed at the last stage in
the sequence of the coupled biquads band-pass
elliptic function.

To obtain the optimum dynamic range in
the realization of the elliptic band-pass filter the
pole-zero pairing of the coupled biquads must be
done as shown in Fig. 2a and then cascading se-
quence, finally the optimum gain assignment
[8], [4] will be carried out. For general develop-
ment let us now write the function of even order
n

n as a proruct of -

5 biquads

n

T(S)~ K 1,18) 15)

where the subscript is in the order of increasing
Q. The sequence of biquads for the optimum

252

dynamic range in cascade realization has been
proved [2] to be

Case (a)
TIS) = Ktn-ty "ta ~ty ~ty = (6al
4 Pt ! W t? P
for n=4k, k-1, 2, -
and
Case (b)
T(S) K['i—'z. 1%271 'tnq;z o l%_z, ' tll_'l,;
for n 4k 2, k-1, 2, (6)

When n = 10, for example, we write five biquads
in the order of pole Q5 to find the cascading
sequence as indicated by encircled numbers.

T(S) ~ Kt (S)-t,(8) - 15(8) 1, (S)-1,(8)
Ty v (13 3 5

cascading sequence

For n =12, we have

TS K1 08S) -1, (8)-t3(S)-1,(8S) - t5(8) -5 (S)

I 3) 1) 2 <y )

When n is odd, the first order function ty =
Sio should be properly treated relative to other
biquads. For example, if we place t in frontin

the sequence as  ¢,-t,-t, -, the minimum of
|'t, | oceurs at w = 0 while the minimum of the
lto-t, |
at w = 1. Thus it contradicts the optimum se-
quencing method proposed in [2]. On the other
hand, if we place ty asa last entry to the se-

quence as ¢, -

product does not occur at w =0 but

t, - t3+ to the procedure coincides
exactly as advanced in [2]. This leads to the
realization of the first order section as the last
stage of the cascade.

The normalized magnitude of the biquads in which
Qp, corresponding to midpoint ¢ exhibits the
highest flatness as shown Fig. 3.

For optimal sequencing in the band-pass realiza-
tion t; should accompany t’so that a pair of bi-
quads; one of low-pass notch and the other of
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Schematic bole-zero Tocation high-pass noth, forms a subsection in the cascade.
(a) 1242} Elliptic ol 8 % g} Considering the nature of LP to BP transfor-
o FU SIS st o o g the et of (60 and (), w ob
Elliptic Band-Reject Function of order 12. tain the optimum sequencing as
jw jw T (S):K[tl . t//][t/ 7 ] {;t, .
\ 8P nodndln, e St e ] (Td)
R
P )\(‘\ \‘/‘(g z for case (a)
\ z PX
‘\ L Tap (S) =K (s tes) pus | “tnes |
\‘ ] 1 1 1
\
\
\ VA P X , ”
\
\ \ for case (b)
\ \
\
\ \ ITII. HIGH ORDER BAND REJECTREALI-
5 5 ZATION
0 0
As a consequence of the transformationS —
1212  Coupled biguads pole-zero pairing St Tw? which is the inverse of the band-pass,
dxozl 2 abghrel - 4 o e
@ mﬂ% i;kq‘@;_l ! we have the pole-zero pattern as shown in Fig.
lgg\dfffls (iase Ib. By using analogy, we can develop the techni-
(b) tH o 2f =] 2] 79 . . .
Band-Reject Case. que which results in the pairing and sequencing
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similar to band-pass realization but the place of
low-pass notch function and high-pass notch func-
tion is reversed.

TielS K[t i) i

7 : n L !
i it 4 4 §

for case (a) (8 al
TBR( K[lmz ;1_+_] [tlflz;zﬂ 'fi_g \]
4 4 4
e, o (8b)
4 4

for case (b

IV. ILLUSTRATIVE EXAMPLES

Example 1.

Find the elliptic band-pass function for the opti-
mum dynamic range realization under the speci-
pication; passband ripple K,=1dB, stopband at-

tenuation g =574p and stopband frequency

wg = 1.3 tutoff frequency w.-= 1,

bandwidth B=0.3.

From the standard table [3] we find n=6

low-pass elliptic function. For the optimum

dynamic range realization [2}, we write
T(S)=Kt,(S) - t,(S) - 1;(8)
T(S)=K,t,(S) - K, t,{S) - Kats (S)
where
b(S) = (S*+2.7698611)
: {S*-+0.2909193 S + 0.6785315)
K,=0.1098799
Q.=2.8314733
. (S} 1.7658735) )
VTS 055141795 1 0. 1886488)
K, =0.0106312
Q,—=0.7876733
1 (S) — {S?417. 0590037)
: (S?10.0781612S +0.9964994)
254

K3 = 1.1642064
Q; —12. 7716574

Ry the frequency transformation we obtain
n=12band-pass transfer function [8],[10],[11]

TorlS) Kt (S)t5(S) - K.t (S) ¢/ (S) -
K.t (S)t7(8)
Ky, (S) - K7t/ (S) - K[t (S) -
KUH(SE - Kyt (S) - KZt2(S)
Where
FUS) (S*11.3008857)
A (ST H0.0629874S 1 1.7184224)
K.~ KK/
- (ST +3. 89137% -
B (S710.0824723S | 2.9460173)
Q; 20, 8118785 = Q7
C
I £1.4499369) B
130117%5 2.0117435)
K, K! KI”
pig . (STi3avlsaley
v (S?10.1455614 S 2.5164742)
Q7 - 10. 8980921 =
v (S) ~ (8710.6216953)
P (8% 10.0163357 S +1.1659816 )
K, KK/
gis Pr8.1430569)
x 2214499 1-3.1327720 )
Q; 77. 8180702 = Q7
Magnitude characteristics of the elliptic

band-pass function is shown in Fig.4(a).

Example 2

Using the method analogous to the band-
pass case to find the optimum sequence for the
band-reject function, we obtain the band-re-
ject transfer function of n=12 [7],[8],[9].
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(S) - Kty (S) ¢ (S) -

(87+2.8896022)

T(S) ~ K./ (S) ] s B
Kst7(8)1;(8S) ' (S§%4-0.9438618 S-+4.1026964)
—K{t(S) - KIE (S) - K{t/(S) - oS (§?+1.7519715)
KUt (S) - Kit2(S) - K145 (S) : (S*10.5176320 S+ 1.2339451)
where K\=K: K §
Q) =2.1459830 — Q!
H(S) — g L2TABORTE) () o S+2 4390635)
(8740, 1281351 5+3.3430624) : (S7+0.0228358 5+ 3.1363850)
2
b (S) =, S 1 1.8122303) ;s — (S*+2.0755920)
(S*10.9438618 S 1 1.5143306 ) ; (§750 01658218 + 1 614115)
K=K K
Q; = 14. 2693480 = QY K,=K{K{
Q) =77.5520734= QY
As=0 001B As=0.00138
078 114120 187198 2 65
Mag [H(ju) )
1.—{. m
4 N=12
0.897 Ar,=1dB
As=257dB
1.20) @,=1.5 1\1.86
O T T
' @Wi=125 @w.,=1/75
Freq. [w]
(a)
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Magnitude characteristics
wan Elliptic o2t

Elliptic Band- Pass.

thy Elliptic df o4« <] ",
Elliptic Band-R eject.

Magnitude characteristics of the elliptic band-
reject function is shown in Fig.4(b),

V. CONCLUSION

A simple method of pole-zero pairing in the
band-pass and band-reject case has been proposed
for the cascade realization of elliptic functions
which lead to the maximum dynamic range.

It is shown that the sequencing techniques
can be developed with reference to the pole
Q’s in the -P and B-R elliptic functions.

Two examples are provided to illustrate pro-
posed methods. The first example in case of band-
pass realization is the case in which the pole-
zero pairing, biquad sequencing, and the gain
distribution are all employed to optimize one of
the most relevant performance measures. Viz.,
the dynamic range.

The second example in case of band-reject
realization is conducted to enhance the dynamic
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range as much as possible.

The proposed high order band-pass and band-

reject elliptic filter realization may be used not
only for RC-active filters, but also for switched

capacitor filters.
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