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ABSTRACT

a transionospheric scintillation channel is accomplished by means of the Gauss-quadrature integration formula.

channel model used, patterned after Rino’s work,

modeled as the envelope of correlated Gaussian quadrature random processes,

tion channel is calculated using actual ionospheric scintillation data for transmission in the UHF

1. INTRODUCTION

The scintillation of radio waves passing through
the ionosphere has been an observed phenomenon

for many years, first by radio astronomers  and

then as a result of the reception of radio signals
from orbiting satellites. The amplitude distribution
approximated
Rice-Na-
kagami, log- normal and bivariate-Gaussian distribu-
tions(1). Rino{2} has shown that the amplitude dis-

of ionospheric scintillation has been
with varying degrees of success by the

tribution of jonospheric scintillation is  described
closely as the envelope of bivariate (Gaussion quad-

rature components and through suitable choices of
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Calculation of error probabilities for a coherent phase-shift keyed communication system operating in

The

is slowly flat fading wherein the envelope of the received signal is

The error probability for the scintilla-
region (30-300MHz).

parameters a good fit is obtained for all amplitu-
des except at the extremes of the distribution. Al-
though similar to the Rice-Nakagami and log-nor-
mal distributions, the bivariate-normal distribution
is more general because it allows the components
to be correlated and to have unequal variance.
The purpose of this paper is to present a use-
ful way of calculating the average error probability
for phased-shift keved signaling in the presence of
bivariate-normal distributed flat fading. The recei-
ver is assumed to track the phase of the received
signals exactly. The Gauss-quadrature integration
formula is employed in the calculation of the ave-
rage error probability,
For situations where the received signal envelope,
A, randomly fluctuates, the overall probability of
error is obtained by averaging p(E/a)over A .

zfjp(a)r(h/

a)da (1)
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p(E/a)is the probability of error given .\=uq,
p(a) is the probability density function (pdf) of A,
and I’; is the average probability of error. In tho-
se cases where the envelope of the signal randomly
fluctuates, the lower limit of the integral becomes
zero. If the received signal is assumed to be a
general Gaussian process, p{a) is an envelope pdf
obtained from a bivariate Gaussian pdf by trans-
forming rectangular coordinates into polar coordi-
nates !

174

pla) = placos 6, asin #) adf (2)
40

where

Das (@, 8) = apyy (Vi, Vi) | Vi=acos #
I V,= asin # (3)
= ap(acos 8, asin §),
0<h<2r, 0=a<wo
Pay (Vz, V) is a correlated bivariate Gaussian pdf.
The error probability for the phase-shift keyed
signal given a, can be derived by assuming a  bi-

phase modulated transmitted signal of the form
x(t)= Acos (wy t+cos™ ' md(t)+8) 4)

where nT <!<{(n+1)T in which T is the signal-
ing interval, d(¢) is the data sequence, and cos™!
m the modulation index. Synchronous detection in
white, Gaussian noise backgrounds requires a cor-
relation or matched filter detector to give minimum
probability of error. Here, the noise is additive,
white, and Gaussian with zero mean and one-sided
power spectral density N, In the special case m=
0, assuming that the receiver tracks the phase
exactly and the fading is slow so that a= constant
within a T-second signaling interval, the probabili-

ty of error, given q, is

p(h'/a)=-él~erfC(«/5a_) (5)

where z is the signal-energy-to-noise-spectral den-
sity ratio. To perform the integration in Eq.(1)wi-
th the lower limit of the integral zero, the Gauss-
quadrature integral formula(6) is applicable if we
know the moments of p(a). The moments may be
used to calculate the weights and abscissas in the

integration formule

fb S@wde= 3 W @+ E ()

where f(x) =0 in (b ¢), W, are the weights x,
are the abscissas, m is the number of weightsand
abscissas, and E' is the error of the approxima-
tion. Here, f{x) can be replaced by the amplitude
pdf p(a) and w (x) by the error probability p{f/
a). Also, bis zero and ¢ is plus infinity. If we
define the rth moments M, associated with w (x)

over (b, ¢), by the equation
[ 70 dh=m, (7)
and M, is represented by

i Wexd =My, 7=0,1, M—1 (8)

it is said that the integral is approximated with
degree of precision 2m—1. If we let Xx,, X, .
Im be the zeros of ¢g(x), ie.,

glx)= (x—x) {x— xz) - {x—- Zm)
="t X et e, (9)

the a's can be obtained from equation(8) by trans-
forming. Finally, the abscissas xx and weights W,
are obtained. [t is stated that there is no guaran-
tee that the zeros of g{(x) will be real and dis-
tinct and that they lie in(b, ¢) even though f(x)=
0. If the roots are not real and distinct, the de-
sired formula does not exist.
The moments of p(a) are given by

2

Ela®)= 0(‘;'0‘ pa(a)daz/o q(8)de

where g(6) is the integral (see Appendix)

/owp(acos f, asin)a"“da=ﬁ
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Table I . Data Sets

2 2 .
Tx Ty Cry

Data Set] | 0.3625 ] 0.0074 | 0.0037 | 0.6°] 1
Data Set[l | 0.2925| 0.0374 | 0.0174 | 3.9°| 1
Data Setll | 0.1580 | 0.0719 | 0.036 |18.6°] 1

[r(k;1+1)fy(—ﬂ+1, 1)]} 10

where

A=clol—C
AN RN
2AD

D=rcos® o} —2(y cos Osin -+ sin® b}

Ii=exp

F=cos 60 — Crysin 0
e — ok
VZAD

7(g) is a gamma function and 7 (s, {) is the incom-
plete gamma function, ¢ and ¢} are the varian-
ces of 1, and Vy, respectively, (., is the cova-
riance of 1, and V,, and V is mean of V.. It is
assumed that the coherent signal is the phase re-
ference; hence the mean of V, becomes zero.

Now it remains to compute the integration for-

Table]]. Value of moments (Data set] )

Order of moment Value of moment

0 1. 000

1 1. 030

2 1. 370

3 2. 105

4 3. 587

5 6. 634

6 1. 313x 10
7 2.754 %10
8 6. 08210
9 1. 406 % 10
10 3. 386 x 10°
11 8. 471> 10°
12 2. 194 > 10°
13 5. 869 % 10°
14 1. 618 X< 10*
15 4. 575x10*
16 1. 335 x 10°
17 3.882x10°
18 1. 218 x 10¢
19 3.335x 10¢
20 1. 216 x 107

20

mula for each signal-to-noise radio aceording to Eq

(6) to obtain the error probability.
2, CALCULATION OF P,

The data used are from Rino. With the values
of the variances of V' and V,, the covariance, and
the mean of V., moments of p(a) were calcula-
ted up to order 20. With the moments thus obta-
ined, the weights and abscissas of the Gauss-qu-
adrature integration formula were calculated. In
finding the roots of the algebraic equation(9) an at-
tempt was made to calculate the roots to  tenth
by Graffe’s root-square method.

Once the weights and abscissas are determined,

the error probability is found by the equation

= /‘)Wp(a)p(lirz) da= éi“ %Wk erfc(vzax)
1
For each set of weights and abscissas are de-
termined, the error probability was calculated for
the signal -to-noise-ratio, 2z, in the range 0 to 20
dB.

3. RESULTS
The technique for calculating [’x just described

was tested by employing the data used by Rino{(2).

Value of moments (Data set [] )

Order of moment Value of moment

0 1, 000
1 1. 039
2 1. 330
3 1. 939
4 3. 114
5 5.398
6 9.982
7 1. 95110
8 4. 007 X 10
9 8.597 x 10
10 1. 920 % 10*
11 4. 447 x10*
12 1. 065 % 10°
13 2.633x10°
14 6.702x10°
15 1. 751x10*
16 4. 706 x 10
17 1. 261X 10®
18 3.644 x10°
19 9. 500 x 10°
20 3.082x10°
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Data set] Data set]l

() I No.of abscissas 10! { ) ! No.,of abscissas

1070 10!

- (5)
N (3)

L 6 o=
F
C )
I @ (41

107 P . . R . 10°* )
0 6 10 14 20 20

Signal-to~Noise Ratio, dB Signal-to-Noise Ratio, dB

Figure 1, Average probability of error(Data set ]) Figure 2. Arerage probability of error(Data set]])

The parameter values for the bivariate Gaussian

Value of moments (Data set [l ) approximation to the envelopes for three separate
Order of moment Value of moment data sets are given in Table ] . These values were

0 1. 000 calculated by Rino.

1 1. 043 The moments up through order 20 were then

2 1. 230 calculated using Eq.(10) and Simpson’s one-third in-

i é 282 tegration rule with 100 integration intervals. They

5 3. 967 are given in Table [l for data sets 1 — [, res-

6 5. 095 pectively. The weights and abscissas are calculated

7 8.331 next. The error probability is then calculated using

8 1.421x10 . . .

9 2 519x 10 Eq.(1]) . The resulting curves are shown in Figu-

10 4.626 10 res 1-3.

11 8.775x 10

12 1. 716 x 10? 4. CONCLUSIONS

3 ? ﬁgi }8: A method has been discussed where by the pro-

15 1. 508 X 10° bability of error for a fading channel can be ap-

16 3.270x 10? proximated by a series by knowing the moments of

17 7. 21.’23>< 10: the envelope of the received signal. Using the Rino

ig ; 635?)83)(;?()‘ bivariate Gaussian model to approximate the enve-

20 8. 938 x 10* lope distribution of three data sets, the moments

21

www.dbpia.co.kr



W RS 84— 4 Vol Y No. 1

P.
3 r

3 Data set [l
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107
10
10 \

i i 1 i i i 1 4

0 6 10 14 20
Signal-to-Noise Ratio, dB

Figure 3. Average probability of error(Data setfll)

were analytically calculated from the approximating
bivariate (Gaussian density function.

The results presented in this paper were for
the case of phase-shift-keyed signaling. The appli-
cation of the method to other coherent and nonco-
herent signaling schemes would be straight-forward

calculation.
APPENDIX

To obtain the nth moment of the amplitude pdf
from the bivariate Gaussian pdf we perform a
change of variables from rectangular to polar co-
ordinates,

If the polar coordinates a and # are used in-
stead of the rectangular coordinates v, and vy, the
Jacobian is simply a and the joint pdf of a and 6
1S

Pao (, §) = aPxy (2, Vy) |
} V= acos f
| vy=asin QA1)
=ap(acosf, asin #)

22

where 0=#<2r, 0Su=sc

If we integrate pg (a, 8) over 6 and a to get
the phase and amplitude pdfs, respectively, we ob-

tain
De () = /0 Pas (acos 8, asin f)ada (A2)
t2rm
pala) = /0 Dae {2cos O, asin #)adf (A3)
Now the nth moment of the amplitude pdf becomes
ICHES / ma"pu (a) da
SO

=./U‘m[ a”_/o‘”p(acos #, asm §a dOJda
(A4)

By interchanging the integrals, it may written

as

Ja™) = /

0

2r x
[ /D " ' placos 8, asin 0) da]df}
(A5)

The inner integral over @ can be obtained in
analytic form. The bivariate Gaussian pdf can be

written in another form by noting that

i Cof
olof (1—P)=0ala) ( 1——2 )
= sz Uy’ - (:zyz (A 6 )
Here ¢; and ¢, are variances of v, and vy,
respectively, 7 is the correlation coefficient and

("xy is the covariance of v, and v,. Now the bi-

variate Gaussian pdf of v, and v, becomes

Pl 0y) = s
2nv ol o) — Cud
S
P 2(0; Uy’h (—‘zyz)
I[(Ux_ L_':r)z (714: —2Cyy (Ux_jx) Vy
+oiad) ] (A7)
|.et ool —Cul= A

The inner integral of Equation (A5) becomes
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lmp(acos #, asin 6))a"“da=jomzﬂjjT

exp[—éa— x((acos 8— ;) 0 —2C,y

(acos 68— T) asin 6+(asin 8)* a,’]]a"“ da
(A8)
Expanding the square in the exponent as

a’ cos*fof —2acos 80,02 + T 0] —2Czya?
cos fsin 68+ asin 82C,, U+ a*sin? fo}

the exponent can be rearranged into the form

a® (cos® Bo,) —2C,y cos Osinf+sin® o)
— 20Uy (cos o) — Cyrysin8) + T2 ol
=a*D—2av. K+ Tto (A9)

where

D=cos* g} —2C,y cos fsin O+ sin* o}

(A10)
and F=cos oy — Crysin 8 (A11)
Thus Eq. (A 8 )becomes

g(0)=[mp(acos 8, asin 8) a™'da

-z oz

x[ at —»ZQ%E + U;ljyz Ha"" da

(A12)

On completing the square on a in the exponent

2av.F  Dltoad T B\
2 x 9y _(, Us
a DD <“ D )

o2 2 g I At
4Bl ek (A13)

The integral may be written as

1 [E}E’-—";GUJI)J
2iva LT T24D

L ews2((a-ZE  Jarda  (ang)

which, if we substitute

D T E D
w=yar (=55 dw=yfz2 da

A | Tk
or a—\/—lj— w+ D

and put

Ve kP —Tlol D

l=exp 2AD

Eq. (A14) become

1 gﬂ. = —w? Q_ U;E ""dw
27{\/7“\' D [;vxﬁe (V DYt )

Ve (A15)

Expanding the term in parentheses by using the

binomial theorem results in

_[wp(acos #, asin #) a™*! da=2”‘}W 1;@
"iw: <7l+l >1‘<2A )""(‘D}E )nu-x

(21 k —i)_ T

[ wrewdu (A16)
— Tk
vZah

However, we notice the integral in Eq. (A16)
can be written in terms of the gamma and incom-
plete gamma functions, where the gamma function

and incomplete gamma function are defined by

[T 2
r(p) fot et dt (A17)
and 7(p,x)=fxt""‘e"dt » "A18)
0
respectively.
Let x=wt dor=2wdw
w=vyT dw=§¢%dx
Fe — T, E
v2AD

The integral may be written
fm w"e‘w’dw=/mw*e“’”'dw+f° wre~v'dw
—-F 0 -F
o0 -F
=£ w“e’w'dw—l w¥e~*'dw (A19)
The first integral in Eq. (A19) can be expressed

in terms of the gamma function by a change of

variable;

23
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" oo T oo 1
wre ' w=/ )8 e x
/o d o (x) ¢ 2 x .

(A20)

The second integral in Eq. (A19)can be expres-

sed in two ways depending on whether k& is even
or odd.
-u 1
*f w*e wdw= / VE2 o 2‘/? dx
_ L k=1
- yl—= 5 L 17
h—even (A21)

When A is odd the integral becomes

-F . - e X 1, x 1 . 5
—.[ wke « dw'—*fo (x) %% ¢ Va3 dw
IS U S U,
=5,
b odd (A22)

Putting all the above results toegther, we ob-

tain
[mp(acos 8, asin 8) a™ da=
/;[:gé <%)<v}r}1
(g e <

1

1
2720
na1-k "21\ k/2
> 5 )

*)

n+ Fo\na1-k 24 \k2
k k—1 2 H
| )—y(~2——+1.1~ )] (a2
where
A=clol— Cy
= ex TEE P —TialD
PTTRAD
D=cos*fod —2C.y cos Osin 8+ sin’ Ho;
kK=cos 80} — C.ysin b
. =Tl
b=
24

f

The right side of Eq. (A23) is now a [{unction of

only. We will denote it by ¢(#). When n is ze-

ro, it is the phase pdf and reduces to

1964%- 8 1 ~19694 115]

VA —T2a) ] Tk
pid) *2”“ exPl 24 + g V2081 i
(T2 —-T2ol D } [~Fxlf
Lexp( 24D rfe V2AD ]
(A24)
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