

〈論文〉

電子 素子에서의 $\frac{1}{f}$ 雜音에 關한 研究

A Study on the Theory of $\frac{1}{f}$ Noise in Electronic Devies

宋 明 鎬*

相 浩**

(M. H. Song)

(S. H. Kim)

(接受日字 1978.12.25)

次......

요 약

Cirouit)의 잡음전류 스펙트럼계산

Abstract

3. 결과에 대한 고찰

1. 서 론

4. 결 론

2. 캐리어 분포에 맥동으로 인한 단락회로(Short

Reference

요 약

반도체 소자에서 생기는 $\frac{1}{4}$ 형의 잡음의 근원이 무엇인가에 대해 지금까지 여러가지 이론이 나왔다.

그중에도 Mcwhorter's Surface model 이 대표적인 이론이었다.

그러나 Hooge는 이론에 반기를 들고 나왔다.

Hooge 의 이론에 의하면 thermo cell 이나 Concentration cell 에서의 $\frac{1}{f}$ — 형의 잡음이 표면효과(surface effect)가 아니라는 것이다.

본 논문에서는 이 두 대표적인 이론을 종합검토할 수 있는 Langenvin type의 Boltzmann transport equation에 입각하여 새로운 일반이론을 세웠다.

본 논문에서는 N형 체널을 갖고 있는 금속산화물반도체 전계효과 트랜지스터에서 단일준위 Shockley-Read-Hall recombination center에 의한 단락회로에서 드레인의 $\frac{1}{f}$ — 형 잡음스펙트럼을 계산하기 위해 시간에 따라 변화하는 양을 포함시키므로써 각 에너지대의 케리어에 대해 준—페르미준위를 정의할 수 없다고 가정했으므로, $\frac{1}{f}$ — 형의 잡음은 다수케리어 효과에 기인한다고 가정했다.

이러한 가정하에서 유도된 $\frac{1}{f}$ - 형의 잡음은 금속산화물반도체 전계효과 트랜지스터에서 $\frac{1}{f}$ - 형의 잡음에 중요한 요인들을 모두 보여주었다.

: 적주파에서 플렛티유를 나타내지 않았고 체널의 면적 A와 드레인 바이어스 전압 V_{2d} 에 비례하고 체널의 길이 L^3 에 반비례한다.

본 논문의 모델에서는 $\frac{1}{f}$ —응답에서 $\frac{1}{f^2}$ 에 대한 잡음스트럼의 전이주파수와 $P \cdot n$ 합다이오우드의 surface center 에 관계되는 완화시간(relaxation time)에 대응하는 주파수 사이를 구별하여 설명할 수 있었다.

본 논문의 결과에서 🕯 —형 잡음스펙트럼은 격자산란이 주원인이 된다.

금속산화물반도체 전계효과 트랜지스터를 살펴보면 격자산란이 주로 표면에서 일어나기 때문에 $\frac{1}{f}$ - 형 잡음이 표면효과라고 말할 수 있다.

^{*} 국민대학교수

^{**} 동양공업전대교수

= Abstract =

The $\frac{1}{f}$ noise spectrum of short-circuited output drain current due to the Shockley-Read-Hall recombination centers with a single lifetime in homogeneous nondegenerate MOS-field effect transfors with n-type channel is calculated under the assumptions that the quasi-Fermi level for the carriers in each energy band can not be defined if we include the fluctuation for time varying quantities, and so $\frac{1}{f}$ noise is a majority carrier effect.

Under these assumptions the derived $\frac{1}{f}$ noise in this paper show some essential features of the $\frac{1}{f}$ noise in MOS-field effect transistors.

That is, it has no lowfrequency plateau and is proportionnal to the channel cross area A and to the driain bias voltage Vd and inversely proportional to the channel length L³ in MOS field effect transistors. This model can explain the discrepancy between the transition frequency of the noise specturm from $\frac{1}{f}$ -response to $\frac{1}{f^2}$ andthe frequency corresponding to the relaxation time related to the surface centers in p-n junction diodes.

In this paper the results show that the functional form of noise spectrum is greatly influenced by the functional forms of the electron capture probability c_n (ϵ) and the relaxation time τ (ϵ) for scattering and the case of lattice scattering show to be responsible for the $\frac{1}{f}$ noise in MOS field effect transistors. So we canconclude that the source of $\frac{1}{f}$ noise is due to lattice scattering.

1. 서 론

반도체 소자에서 생기는 $\frac{1}{f}$ 잡음의 근원이 무엇인가에 대해 여러가에 이론이 1,233 발표되었다. 지금까지 발표된 여러가지 이론들 중 가장 널리 인정을 받고 있다 이론은 Mcwhorter's-surface model에 입각할 이론(1,53)이다.

Mcwhorter's-surface model 은 현재까지 실험적으로 증명하지 못한 저주파 극한에서 Plateau 를 예시하고 있으며 P-n 접합다이도우드에서 $\frac{1}{f}-$ 응답에서부터

1 ← 응답에 이르기까지 잡음 스펙드럼의 전이(transition) 주파수와 표면센타(Surface center)에 관계되는 완화시간(relaxation time)에 대응하는 주파수 사이를 구별해서 설명할 수 없었다. 6,7,8) 이와 같이 1 습 잡음의 근원이 표면이라는 Mcwhorter's-surface model 은 Hooge⁹⁾에 의해 반박을 받았다.

즉, Hooge는 $\frac{1}{f}$ 잡음이 Surfae effect 가 아니라고 주장함과 아울러 이동도의 맥동(mobility fluctuation) 만이 thermo cell 에서 $\frac{1}{f}$ 잡음현상을 설명해 줄 수 있다는 특정한 예를 들었다. 10

¹⁾ Berz F., Theory of low frequency noise in Si MOST's, Solidstate electronics, Vol. 13, pp. 631-647, 1970.

Fu H.S. and SahC.T., Theory and experiment on surface 1/f noise, IEEE Transaction on electron devices, Vol. ED-19, pp. 273-285, 1972.

³⁾ Christensson S., Lundstron I., and Svensson C., Derivation of 1/f noise in silicon inversion layers from carrier motion in a surface quand, Solid-state electronics, Vol. 11, pp. 621-627, 1968.

Hsu S.T., Surface state related 1/f noise in MOS transistors, Solid-state electronics, Vol. 13, pp. 1451-1459. 1970.

⁵⁾ Mcwhorter A.L., Semiconductor surface physics (edited by R.H. Kingston), University of Pennsylvania Press, philadelphia, 1957.

⁶⁾ Hsu S.T., Surface-state related 1/f noise in p-n junctions, Solid-state electronics, Vol. 13, pp.843-855, 1970.

Laurit Peter O., Noise due to generation and recombination of carrier in p-njunction transfor regions, IEEE Transactions on electron devices, Vol. E-D-15, pp. 770-776, 1968.

Feigt I. and Jantsch O., The upper frequency limit of the 1/f noiseand the surface relaxation time, Solid state electronics, Vol. 14, pp. 391-396. 1971.

⁹⁾ Hooge F.N., 1/f noise is no surface effect, physics Letters, Vol. 29A, number 6, pp. 139-140, 1969.

¹⁰⁾ Hooge F.N., Discussion of recent experiment on 1/f noha, pesiicsy, Vol. 60, pp. 130-144, 1972.

본 논문에서는 이들 두 대조적인 잡음 이론을 명백히 규명하기 위해서 Langenvin-type의 Boltzmann transport equation 에 입각한 모델을 선정하여 금속산화물반도체 전계효과 트랜지스터에서 $\frac{1}{t}$ 잡음의 원인을 규명하였다. Langenvin-type의 Boltzmann transport equation 에 입각한 모델을 선정한 이유는 이동도의 맥동에 관한 개념이 단지 Boltzmann transport equation 으로부터 얻어질 수 있기 때문이고 금속산화물반도체 전체효과 트랜지스터를 택한 이유는 저주파용트랜지스터로써 좋은 전기적 특성을 갖고 있는 금속산화물반도체 전계효과 트랜지스터에서 저주파에서의큰 잡음 스펙트럼 (noise-spectrum)을 나타내는 $\frac{1}{t}$ 잡음이 크게 문제시 되기 때문이다.

본 논문에서 선정한 모델은 Mcwhorter's surface model 과는 달리 단일준위 (Single level) shockely-Read-Hall recombination center 를 가정했으며 또한 모든 순간에 있어서 준평형(quasi-equilibrium) 상태에 있지 않다고 가정했다. 이러한 가정하에서 새로이산출된 케리어들은 전계가 가해질 때 준평형상태에서 산출된 케리어와는 다른 여러면에서 잡음전류에 기여하게 된다.

2. 캐리어 분포에 매동으로 인한 단락 회로 (Short Circuit)의 잡음전류 스펙트럼계산

체널의 길이 L, 체널의 단면적 A를 갖고 있는 N형 체널 금속화물반도체 전계효과 트랜지스터의 단면도는 Fig 2-1과 같다.

드래인 전압 $V^a(d.c.)^*$ 게이트전압 $V_g(d.c.)$ 를 걸어주고 쇼우스에서 체널을 따라 형성된 X지점의 책널전압을 V(x)라 한다.

게이트전압 V_s 는 N형 채널이 형성되도록 충분히 걸어주며, 드래인전압 V^d 는 펀치오프(Pinch-off)권압에비해 작은 범위내로 국한 시킨다.

채널에 케리어밀도는 쇼우스와 드래인 사이에서 위 치에 따라 변하지 않는다고 가정하며 채널외 폭도 쇼 우스와 드래인 사이에서 일정하다고 근사화 시킨다.

반도체는 균등(homogeneous)하고 비축되(nondegenerate)된 일정에너지표면(constant evergy surface)를 갖고 있다고 가정한다.

체널의 임의의 *x*점에서 임의의 시간 t순간에 진도

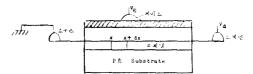


Fig. 2-1 Diagram of MOS-field effect transistor

- g --

대(conduction band)에 있는 자유전자의 분포함수를 $f_c(x,k,t)$ 라 하고 이때 자유전자분포에 미소맥동에 대한분포함수를 $\triangle f_b(x,k,t)$ 라 하자. 이러한 조건하에서 금속화물반도체 전계효과 트랜지스터에서 완화시간군 사화(relaxation time approximation)를 적용한 Boltzmann transport equation 은 다음과 같다.

$$j\omega \triangle f_{\epsilon}(x,k,\omega) - \frac{qE_{0}}{h} \frac{\partial \triangle f_{\epsilon}(x,k,\omega)}{\partial k_{x}} - \frac{q\triangle E(x \cdot \omega)}{h}$$
$$\frac{\partial f_{\epsilon}(k)}{\partial k_{x}} + \frac{1}{h} \frac{\partial \epsilon(k)}{\partial k_{x}} \frac{\partial \triangle f_{\epsilon}(x,k,\omega)}{\partial x}$$
$$= -\frac{\triangle f_{\epsilon}(x,k,\omega)}{\tau(\epsilon)} + H(x,k,\omega) \cdots (2-1)$$

式(2-1)에서 $\triangle f_c(x,k,\omega)$ 는 $\triangle f_c(x,k,t)$ 를 푸우리어 변환으로 나타낸 것. E_0 는 체널에서 x 방향으로의 d.c 전계강도, $\triangle E(x,\omega)$ 는 채널의 임의의 t 순간 x 지점에서 x 방향으로의 미소 맥동 전계강도 $\triangle E(x,k,t)$ 를 fourior 변환으로 나타낸것, $f_s(k)$ 는 정상상태(Steady State)에서 전자분포함수, q는 전자의 전하량의 크기, $H(x,k,\omega)$ 는 마구자비잡음원(random noise source) H(x,k,t)를 푸리어 변환으로 나타낸 것, K_x 는 파동백 터(Wawe vector) k의 x성분, $\epsilon(k)$ 는 전도대에 있는 자유전자의 에너지, $\tau(\epsilon)$ 는 산란(Scattering)에 대한 완화시간, $j=\sqrt{-1},\omega$ 는 각 주파수이다.

 $\pm \chi(2-1)$ 의 양변에 $\frac{q}{4\pi^3h}$ $\frac{\partial \epsilon}{\partial kx}$ 를 곱한후 체널을 따라 x=0 에서 x=L 까지 적분하고 단락회로에 대한 경계조건 $\frac{L}{\sigma} dx \wedge E(x,\omega)=0$ 를 적용하여 정리하면 다음과 같다.

$$\begin{split} &\frac{q}{4\pi^{3} \mathring{\mathbf{h}}} \int_{BZ} \frac{\partial \mathbf{E}}{\partial k_{x}} dx \int_{0}^{L} dx \Delta f(x,k,\omega) \\ &= \frac{q^{2} \mathbf{E}_{0}}{4\pi^{3} \mathring{\mathbf{h}}^{2}} \int_{BZ} dk \frac{\tau(\epsilon)}{1+j\omega\tau(\epsilon)} \frac{\partial \epsilon}{\partial k_{x}} \frac{\partial}{\partial k_{x}} \int_{0}^{L} dx \Delta f_{\epsilon}(x,k,\omega) \\ &- \frac{q^{2} \mathbf{E}_{0}}{4\pi^{3} \mathring{\mathbf{h}}^{2}} \int_{BZ} dk \frac{\tau(\epsilon)}{1+j\omega\tau(\epsilon)} \frac{\partial \epsilon}{\partial k_{x}} \left(\frac{\partial \epsilon}{\partial k_{x}}\right)^{2} \\ &\qquad \left[\Delta f_{\epsilon}(\mathbf{L},k,\omega) - \Delta f_{\epsilon}(o,k,\omega)\right] \\ &+ \frac{q}{4\pi^{3} \mathring{\mathbf{h}}} \int_{BZ} dk \frac{\tau(\epsilon)}{1+j\omega\tau(\epsilon)} \frac{\partial \epsilon}{\partial k_{x}} \int_{0}^{L} dx \mathbf{H}(x,k,\omega) \\ &\qquad \cdots \cdots (2-2) \end{split}$$

N형 채널에서 x 방향으로의 전체 전류밀도는 전자 전류밀도와 거의 동일하며 전자전류에 미소 맥동은 다음과 같다. 11)

$$\triangle J_n(x, \omega) = \frac{q}{4\pi^3 h} \int_{BZ} dk \frac{\partial \epsilon}{\partial k} \triangle f_{\epsilon}(x, k, \omega) \cdots (2-3)$$

式(2-3)을 체널 길이에 따라 적분한 후 式(2-2)에 대입하여 정리하면 트레인에 전체 미소 맥동 전류는다음과 같다.

式(2-4)에서 A는 체널의 단면적이다.

채널의 d.c. 전계강도 $\mathbf{E}_0=0$ 일 경우에는 예잡음만이 존재하므로 式(2-4)에서 두번째, 세번째 항은 열잡음으로 간주할 수 있으며 단지 첫번째 항만이 과잉잡음 (excess noise)이다. $^{12)}$

$$\triangle \mathbf{I}^{d}_{ex}(\epsilon) = \frac{q^{2}\mathbf{E}_{0}\mathbf{A}}{4\pi^{3}h^{2}\mathbf{L}} \int_{\mathbf{B}Z} dk \frac{\tau(\epsilon)}{1+j\omega\tau(\epsilon)} \frac{\partial(\epsilon)}{\partial k_{x}} \frac{\partial}{\partial k_{x}}$$
$$\int_{0}^{L} dx \triangle f_{c}(x,k,\omega) \qquad \cdots \cdots (2-5)$$

 $\frac{1}{f}$ 잡음과 생성-재결합 잡음이 \triangle Idex로부터 산출된 다는 것은 기초 잡음 이론에서 기대할 수 있다.

 $\triangle I_{dex}$ 를 구하기 위해서는 $\int_0^L\!\!dx \triangle f_c(x,k,\omega)$ 의 해를 단락(Short)희로에 대해 구해야 함을 알 수 있다.

1 차근사화(first order approximation)에 의해 $\int_0^L\!dx\! riangle f_\epsilon(x,k,\omega)$ 는 열적평형상태에서 $\int_0^L\!dx\! riangle f_\epsilon^0(x,k,\omega)$ 와 동등하게 놓을 수 있다.

열적평형상태에서는 ϵ 가 k보다 더 좋은 좌표이므로 $\triangle f_{\epsilon}(x,k,\omega)$ 를 $\triangle f_{\epsilon}^{0}(x,\epsilon,\omega)$ 로 대치시킨다.

반도체는 정방형대칭(Cubic Symetry)이고 구일정에 너지표면(Sperical Constant energy surface)로 가정 했으며, 경계지점(boundary zone)에서 $\frac{\partial \epsilon}{\partial k_*} = 0$ 이고, 전도대에 최저에너지 준위 E_ϵ 를 0 으로 하고 전도대에 서 전자의 에너지 $\epsilon = \frac{h^2 k^2}{2m}$ 의 관계를 이용하여 式(2-5)를 정리하면 다음과 같다.

$$\Delta I_{dex}(\omega) = \frac{q^2 E_0 A}{4\pi^3 L} \frac{1}{m} \int_{CB} \left[\frac{\tau(\epsilon)}{1 + j\omega \tau(\epsilon)} + \frac{2}{3} \epsilon \left\{ \frac{\tau(\epsilon)}{1 + j\omega \tau(\epsilon)} \right\} \right] d\epsilon \times \int_0^L \Delta f_0^{\epsilon}(x, \epsilon, \omega) N_{\epsilon}(\epsilon) dx \qquad (2-6)$$

式(2-6)에서 $N_{\epsilon}(\epsilon)d\epsilon$ 는 에너지 범위 $d\epsilon$ 내에 상대 밀도이며 m은 전자의 유효 질량이고 적분속의 $\frac{h^2k^2}{2m}$ 은 $\frac{\epsilon}{3}$ 137로 대치시켰으며 ϵ 에 대한 적분은 전도내에 대해 취해졌다.

$$i)$$
 $\omega \ll rac{2\pi}{< au(\epsilon)>}$ 인 경우

여기서 $<\tau(\epsilon)>는 \tau(\epsilon)$ 의 평균치이다.

式(2-6)에서 $\frac{\tau(\epsilon)}{1+j\omega\tau(\epsilon)}$ = $\tau(\epsilon)$ 로 대치될 수 있으므로

式(2-6)에 대한 과잉잡음(excess noise) 전류의 스 패트럼을 구하면 다음과 같다.

$$\begin{split} \mathbf{S}_{Iddx} &= \frac{\mathbf{V}_{d}^{2}}{\mathbf{L}^{4}} \left(\frac{q^{2}\mathbf{A}}{4\pi^{3}} \right)^{2} \frac{1}{m^{2}} \int_{\mathcal{C}\mathcal{B}} d\epsilon \left[\tau(\epsilon) + \frac{2}{3} \epsilon \frac{\partial \tau(\epsilon)}{\partial \epsilon} \right] \\ &\times \int_{\mathcal{C}\mathcal{B}} d\epsilon' \left[\tau(\epsilon') + \frac{2}{3} \epsilon' \frac{\partial \tau(\epsilon')}{\partial \epsilon'} \right] \\ &\times \mathbf{S} \triangle f_{c}^{0}(\epsilon, \epsilon', \omega) \mathbf{N}_{c}(\epsilon) & \cdots \cdots (2-7) \\ &\vec{\Xi}(2-7) \text{에 서 는 E}_{0} &= -\frac{\mathbf{V}d}{\mathbf{L}} \text{의 관계를 이용했으며} \end{split}$$

 $\int_0^L\!\!dx \triangle f_\epsilon{}^o(x,\epsilon,\omega)\,\mathrm{N}^\epsilon(\epsilon)$ 의 스펙트럼을 $\mathrm{S}\triangle f_0{}^o(\epsilon,\epsilon',\omega)$ 로 나타내었다.

 S_{Idez} 을 구하기 위해서는 우선 $S riangle f_{\epsilon^o}(\epsilon,\epsilon',\omega)$ $N_{\epsilon}(\epsilon)$ 를 구해야 한다.

 $S \triangle f_o^c(\epsilon,\epsilon',\omega)$ $N_c(\epsilon)$ 는 생성-재결합(generation-reconbination) 과정에 주된 원인이 됨을 기존 잡음 이론에서 알 수 있다. 14

열적평형상태에서 단일 준위 Shockley-Read-Hall 재결합센터(generation-recombination)에 대한 운동식 (kinetic equation)은 다음과 같다. 19)

$$\begin{split} &\frac{\partial}{\partial t} \int_{0}^{L} f_{\epsilon}^{0}(x,\epsilon,t) \mathbf{N}_{\epsilon}(\epsilon) dx = - \int_{0}^{L} f_{tp}^{0}(x,t) \mathbf{N}_{t} \epsilon_{n}(\epsilon) f_{\epsilon}^{0}(x,t) \\ &\epsilon, t) \mathbf{N}^{\epsilon}(\epsilon) dx + \int_{0}^{L} f_{t}^{0}(x,t) \mathbf{N}_{ten}(\epsilon) f_{\epsilon p}^{0}(x,\epsilon,t) \mathbf{N}_{\epsilon}(\epsilon) \end{split}$$

¹¹⁾ Smith R.A., Semiconductuctors, Cambridge University Press, 1964.

¹²⁾ Vander Ziel A., Noise; Sources, Chrocterization, Measurment, Prentice-Hall, Inc., Englewood Cliffs, 1970.

¹³⁾ Jacobon O.C., Canal C. Ottavian G., Ouaranta A., A review of some charge transport properties of silicon, Solid-state electronics, Vol. 20, pp. 77-89, 1977.

¹⁴⁾ Van Vliet K.M., Noise sources in transport equation associated with Ambipolar diffussion and Shockley-Read recombination, Solid-state electronics, Vol. 13, pp. 649-657, 1970.

$$dx + \int_{0}^{L} r_{1}(x, \epsilon, t) dx \qquad \cdots \cdots (2-8)$$

$$\frac{\partial}{\partial t} \int_{0}^{L} f_{vp}^{0}(x, \epsilon, t) N_{v}(\epsilon) dx = \int_{0}^{L} f_{tp}^{0}(x, \epsilon, t) N_{tep}(\epsilon)$$

$$f_{v}^{0}(x, \epsilon, t) N_{v}(\epsilon) dx - \int_{0}^{L} f_{t}^{0}(x, t) N_{tep}(\epsilon) f_{vp}^{0}(x, \epsilon, t)$$

$$N_{v}(\epsilon) dx - \int_{0}^{L} r_{2}(x, \epsilon, t) dx \qquad \cdots (2-9)$$

$$\frac{\partial}{\partial t} f_{t}^{0}(x, t) N_{t} = \int_{CB} f_{tp}^{0}(x, t) N_{ten}(\epsilon) f_{e}^{0}(x, \epsilon, t) N_{e}(\epsilon)$$

$$d\epsilon - \int_{CB} f_{t}^{0}(x, t) N_{ten}(\epsilon) f_{ep}^{0}(x, \epsilon, t) N_{e}(\epsilon) d\epsilon$$

$$+ \int_{VB} f_{tp}^{0}(x, t) N_{te}(\epsilon) f_{vp}^{0}(x, \epsilon, t) N_{v}(\epsilon) d\epsilon$$

$$- \int_{VB} f_{t}^{0}(x, t) N_{te}(\epsilon) f_{vp}^{0}(x, \epsilon, t) N_{v}(\epsilon) d\epsilon$$

$$+ r_{3}(x, t) \qquad \cdots (2-10)$$

式(2-8), (2-9), (2-10)에서 $f_v^2(x,\epsilon,t)$ 와 $f_v^2(x,\epsilon,t)$ 는 열적평형 상태에서 미소 맥동을 포함한 전도대에서 전자분포와 평형대에서 전자분포 함수이고 $f_{vp}^2(x,\epsilon,t)$ =1- $f_v^2(x,\epsilon,t)$ 와 $f_{vp}^2(x,\epsilon,t)$ 는 열적평형상태에서 미소 맥동을 포함한 정공에 대한 분포함수이다.

 N_t 는 단위부피당의 트랩(trap) 밀도이고 $f_t^0(x,t)N_t$ 는 열적평형상태에서 단위 부피당, 에너지 준위 ϵ_t 를 갖고 있는 트랩센타(trap Center)에서 트랩을 채우고 있는 전자의 수이다.

 $f_{ip}^{0}(x,\epsilon,t)$ N_i는 열적평형 상태에서 단위부피당 비어 있는 트랩(trap)의 수이다.

 $N_{
u}(\epsilon)d\epsilon$ 는 에너지 범위 $d\epsilon$ 에서 평형대에 상태수밀 도이다.

 $C_n(\epsilon)$ 는 에너지범위 $d\epsilon$ 에서 한 전자가비어있는 트 랩에 붙잡흴 단위시간당의 평균확률이고 $e_p(\epsilon)$ 는 에너지 범위 $d\epsilon$ 에서 한 정공이 튀어나올 단위 시간당의 평균확률이다.

 $r^1(x,\epsilon,t)$, $r_2(x,\epsilon,t)$, $r_3(\alpha,t)$ 는 생성-재결합 잡음원 (noise source)이다.

式(2-10)에 adiabatic approximation,
$$\frac{\partial f_i^{\mathfrak{o}}(x,t)}{\partial t}$$

=0를 적용하고 $f_{tp}^0=1-f_t^0$ 의 관계를 적용한 후 式(2-8)에 대입하면 다음과 같은 식을 얻는다.

$$\frac{\partial}{\partial t} \int_{0}^{L} f_{\epsilon}^{0}(x, \epsilon, t) N_{\epsilon}(\epsilon) dx = \int_{0}^{L} \left[-N_{t} c_{n}(\epsilon) f_{\epsilon}^{0}(x, \epsilon, t) \right]$$

$$N(\epsilon) \{N_t \int_{\Omega_p} e_n(\epsilon) \times f_{\epsilon p}^0(x, \epsilon, t) N_{\epsilon}(\epsilon) d\epsilon + N_t \}$$

$$\int_{VB} c_{p}(\epsilon) f_{vp}^{0}(x,\epsilon,t) N_{v}(\epsilon) d(\epsilon) \} + N_{t}e_{n}(\epsilon)$$

$$f_{ep}^{0}(x,\epsilon,t) N_{e}(\epsilon) \times \{N_{t} \int_{CB} c_{n}(\epsilon) f_{e}^{0}(x,\epsilon,t) N_{e}(\epsilon) d\epsilon$$

$$+ N_{t} \int_{VB} e_{p}(\epsilon) f_{v}^{0}(x,\epsilon,t) N_{v}(\epsilon) d\epsilon \} dx$$

$$\{N_{t} \int_{CB} c_{n}(\epsilon) f_{e}^{0}(x,\epsilon,t) N_{e}(\epsilon) d\epsilon + N_{t} \int_{CB} e_{n}(\epsilon) f_{ep}^{0}(x,\epsilon,t)$$

$$N_{e}(\epsilon) d\epsilon + N_{t} \int_{VB} e_{p}(\epsilon) f_{v}^{0}(x,\epsilon,t) N_{v}(\epsilon) d\epsilon + N_{t} \int_{VB} c_{p}(\epsilon) f_{vp}^{0}(x,\epsilon,t)$$

$$N_{e}(\epsilon) f_{vp}^{0}(x,\epsilon,t) N_{v}(\epsilon) d\epsilon \} + \int_{e}^{L} \{N_{t}c_{n}(\epsilon) f_{e}^{0}(x,\epsilon,t)$$

$$N_{e}(\epsilon) + N_{t}e_{n}(\epsilon) f_{ep}^{0}(x,\epsilon,t) N_{e}(\epsilon) \} r_{3}(x,t) dx /$$

$$\{N_{t} \int_{CB} c_{n} f_{e}^{0} N_{c} d\epsilon + N_{t} \int_{CB} e_{n} f_{ep}^{0} N_{c} d\epsilon + N_{t} \int_{UB} e_{p} f_{u}^{0}$$

$$N_{u} d\epsilon + N_{t} \int_{VB} c_{p} f_{vp}^{0} N_{v} d\epsilon \} + \int_{e}^{L} r_{1}(x,\epsilon,t) dx$$

$$(2.11)$$

Shockley 의 논문¹⁵⁾에서와 같이 비축퇴된 반도해에서 C_n , E_n , C_p , E_p , n(x,t), p(x,t), n_1 , p_1 을 정의하고 정의식에 따라 다음과 같은 관계식을 쉽게 얻을 수 있다.

$$N_{t}\int_{CB}c_{n}(\epsilon)f_{\epsilon}^{0}(x,\epsilon,t)N_{\epsilon}(\epsilon)d\epsilon = C_{n}(\epsilon)n(x,t)\cdots(2-12)$$

$$N_{t}\int_{CB}e_{n}(\epsilon)f_{\epsilon\rho}^{0}(x,\epsilon,t)N_{\epsilon}(\epsilon)d(\epsilon) = C_{n}(\epsilon)n_{1}\cdots\cdots(2-13)$$

$$N_{t}\int_{VB}e_{\rho}(\epsilon)f_{v\rho}^{0}(x,\epsilon,t)N_{v}(\epsilon)d\epsilon = C_{\rho}(\epsilon)\rho(x,t)$$

$$\cdots\cdots\cdots(2-14)$$

$$N_{t}\int_{VB}e_{\rho}(\epsilon)f_{v}^{0}(x,\epsilon,t)N_{v}(\epsilon)d\epsilon = C_{\rho}(\epsilon)p_{1}\cdots\cdots(2-15)$$

式(2-12)에서 (2-15)까지에서 n(x,t)는 미소맥동을 포함한 전도대에서 전자밀도이고 p(x,t)는 미소맥동을 포함한 평형대에서 정공밀도이다. 式(2-12), (2-13), (2-14), (2-15)를 이용하면 式(2-11)은 다 아과 같이 변형될 수 있다.

$$\frac{\partial}{\partial t} \int_{0}^{L} dx f_{\epsilon}^{0}(x, \epsilon, t) N_{\epsilon}(\epsilon)$$

$$= \int_{0}^{L} dx \left[\left\{ -N_{t} c_{n}(\epsilon) f_{\epsilon}^{0}(x, \epsilon, t) N_{\epsilon}(\epsilon) \right\} \left\{ C_{n} n_{1} \right\} \right]$$

$$+ C_{p} p(x, t) + N_{t} e_{n}(\epsilon) f_{\epsilon p}^{0}(x, \epsilon, t) N_{\epsilon}(\epsilon) \left\{ C_{n} n(x, t) \right\}$$

$$+ c_{p} p_{1} \left[\left[\left(n(x, t) + n_{1} \right) + c_{p} \left\{ p(x, t) + p_{1} \right\} \right] \right]$$

$$+ \int_{0}^{L} N_{1} \left\{ c_{n}(\epsilon) f_{\epsilon}^{0}(x, \epsilon, t) N_{\epsilon}(\epsilon) + e_{n}(\epsilon) f_{\epsilon p}^{0}(x, \epsilon, t) \right\}$$

$$N_{\epsilon}(\epsilon) \left\{ r_{3}(x, t) dx / \left[c_{n} \left\{ n(x, t) + n_{1} \right\} + c_{p} \left\{ p(x, t) + p_{1} \right\} \right] \right\}$$

$$+ p_{1} \left\{ -\frac{L}{2} r_{1}(x, \epsilon, t) dx \right\}$$
......(2-16)

¹⁵⁾ Shockley W. and Read W.T. Read, Statistics of the recombination of holesand electrons, physical review, Vol. 87, pp. 835-842, 1952.

式(2-16)에서
$$f_c^o(x,\epsilon,t) = f_{co}(\epsilon) + \triangle f_c^o(x,\epsilon,t)$$

$$f_{cp}^o(x,\epsilon,t) = f_{cpo}(\epsilon) + \triangle f_{cp}^o(x,\epsilon,t), n(x,t) = n_0$$

$$+ \triangle n(x,t),$$

$$p(x,t) = p_0 + \triangle p(x,t)$$
의 관계를 얻용하고, $\triangle f_c^o$

$$= -\triangle f_{cp}^o < n = \triangle p$$
의 관계를 이용하면, 다음과
같은 작을 이는다.
$$\frac{\partial}{\partial t} \int_0^L \triangle f_c^o(x,\epsilon,t) N_c(\epsilon) d_x = -\frac{1}{D_0^2} \{-N_t c_n(\epsilon) f_{co}(\epsilon)\}$$

$$N_c(\epsilon) (C_n n_1 + C_p p_0) + N_t e_n(\epsilon) f_{cpo}(\epsilon) N_c(\epsilon) (C_n n_0)$$

$$+ C_p p_1 \} (c_n + c_p) \int_0^L \triangle n(x,t) dx (2-17a) + \frac{1}{D_0}$$

$$\{-N_t c_n(\epsilon) f_{co}(\epsilon) N_c(\epsilon) c_p + N_t e_n(\epsilon) f_{ope}(\epsilon) N_c(\epsilon) c_n \}$$

$$\int_0^L \triangle n(x,t) dx (2-17b) - \frac{1}{D_0} \{N_t c_n(\epsilon) (C_n n_1 + C_p p_0)$$

$$+ N_t e_n(\epsilon) (C_n n_0 + C_p p_1) \} \int_0^L \triangle f_0^c(x,\epsilon,t) N_c(\epsilon) dx$$

$$+ r_f(\epsilon,t)$$

$$r_f(\epsilon,t) = \frac{1}{D_0} \{N_t c_n(\epsilon) f_{co}(\epsilon) N_c(\epsilon) + N_t e_n(\epsilon)$$

$$f_{cpo}(\epsilon) N_c(\epsilon) \} \times \int_0^L r_3(x,t) dx + \int_0^L r_1(x,\epsilon,t) dx$$

$$\cdots \cdots (2-18)$$

 $D_0 = C_n(n_0 + n_1) + C_p(p_0 + p_1)$ 이고 $\cdots \cdots (2-19)$ $\triangle f_c^o$, $\triangle f_c^o$, $\triangle n$, $\triangle n$, $\triangle n$ 는 정상상태에서 부터의 미소 맥동이며 $f_{co}(\epsilon)$, $f_{cpo}(\epsilon)$, n_o , p_o 는 열적평형상태에서 정상상태에서 정상상태 값이다.

열적평형상태에서 전도대에 어떤 에너지 범위 d 에서 정상상태에서 전자의 망적 재결합은 0이므로 式(2 —16)로부터 다음과 같은 식을 얻을 수 있다.

$$\frac{1}{D_0} \{ -Ntc_n(\epsilon) f_{\epsilon o}(\epsilon) (C_n c_1 + C_p p_0) + Nte_n(\epsilon) N_{\epsilon}(\epsilon) (C_n n_0 + C_p p_1) \} = 0 \qquad \cdots (2-20)$$

式(2-20)로 부터 式(2-17a)는 0이며 저주입(low injection) 인 경우 열적평형상태가 아니더라도 式(2-17a)는 式(2-17b)와 式(2-17c)에 비해 무시될 수 있다.

式(2-17)를 풀려면 $\int_0^L dx \triangle n(x,t)$ 를 구해야 한다. 式(2-17)를 전도대에서 ϵ 에 대해 적분하고 式(2-13)을 적용하면 다음과 같은 결과를 얻는다.

$$\tau_{f}(\epsilon) = \frac{D_{0}}{Ntc_{n}(\epsilon)(C_{n}n_{1} + C_{p}p_{0}) + Nte_{n}(\epsilon)(C_{n}n_{0} + C_{p}p_{1})}$$
$$= \frac{D_{0}}{Ntc_{n}(\epsilon)C_{n}n_{1} + C_{p}p_{0})} \qquad \cdots \cdots (2-23)$$

式(2-23), 式(2-24)를 이용하여 (2-17), 式(2-21)을 정리하면 다음과 같다.

$$\begin{aligned}
&[j\omega + \frac{1}{\tau_f(\epsilon)}] \int_0^L \triangle f_c^0(x, \epsilon, \omega) N_c(\epsilon) dx = \frac{1}{D_0} \\
&\{ -N_t c_n(\epsilon) f_{co}(\epsilon) N_c(\epsilon) c_p + N_t e_n(\epsilon) f_{cpo}(\epsilon) N_c(\epsilon) c_n \} \\
&\int_0^L n_1(x, \omega) d_x + r_f(\epsilon, \omega) & \cdots (2-25)
\end{aligned}$$

$$(j\omega + \frac{1}{\tau_0})$$
 $\int_0^L n_1(x,\omega)d_x = r_n(\omega)$ (2-26)

式 (2-24), 式 (2-25)에서 $r_f(\epsilon, \omega)$ 와 $r_n(\omega)$ 는 $r_f(\epsilon, t)$ 와 $r_n(t)$ 를 푸우리어 변환한 것이며, $r_f(\epsilon, \omega)$ 와 $r_n(\omega)$ 는 다음과 같다.

$$r_{f}(\epsilon,\omega) = \frac{1}{D_{0}} \{ N_{\epsilon}c_{n}(\epsilon) f_{\epsilon o}(\epsilon) + N_{\epsilon}e_{n}(\epsilon) f_{\epsilon p o}(\epsilon) N_{\epsilon}(\epsilon) \}$$

$$\times \int_{0}^{L} r_{3}(x,\omega) dx + \int_{0}^{L} r_{1}(x,\epsilon,\omega) dx \quad \cdots \cdots (2-27)$$

$$r_{n}(\omega) = \frac{1}{D_{0}} c_{n}(n_{0}+n_{1}) \int_{0}^{L} r_{3}(x,\omega) dx + \int_{0}^{L} dz \int_{CB}$$

$$d\epsilon r_{1}(x,\epsilon,\omega) \qquad \cdots \cdots \cdots \cdots (2-28)$$
式 (2-27),式 (2-28)에서 $r_{1}(x,\epsilon,\omega)$ 와 $r_{3}(x,\omega)$ 는

 $r_f(x,\omega)$ 와 $r_n(\omega)$ 의 스펙트럼은 $S_{rf}(\epsilon,\epsilon',\omega)$, $S_{rn}(\omega)$ 로 나타내고 式(2-25)으로부터 $S_{\triangle fc}(\epsilon,\epsilon',\omega)$ $N_c(\epsilon)$ 을 구하면 다음과 같다.

 $r_1(x, \epsilon, t)$ 와 $r_3(x, t)$ 를 푸우리어 변환한 것이다.

$$\begin{split} & S \triangle \int_{\epsilon}^{0} (x, \epsilon, \omega) N_{\epsilon}(\epsilon) \\ &= \frac{\tau_{f}(\epsilon)}{1 + j\omega\tau_{f}(\epsilon)} \frac{\tau_{f}(\epsilon')}{1 - j\omega\tau_{f}(\epsilon')} S_{r}(\epsilon, \epsilon', \omega) \\ &+ \frac{1\tau_{f}(\epsilon)}{D_{0}^{2}[1 + j\omega z_{f}(\epsilon)]} \frac{\tau_{f}(\epsilon')}{1 - j\omega\tau_{f}(\epsilon')} \frac{\tau_{0}^{2}}{1 + \omega^{2}\tau_{0}^{2}} \\ &\{ -N_{t}c_{n}(\epsilon)f_{co}(\epsilon)C_{p}(\epsilon) + N_{t}e_{n}(\epsilon)f_{cpo}(\epsilon)N_{c}(\epsilon)C_{n}(\epsilon) \} \end{split}$$

¹⁶⁾ Bilger H.R., Tandon J.L. and Nicolet H.A., Excess noise measurments in ion-implanted silicon resistors, Solid-state electronics, Vol. 17, pp. 599-605, 1974.

¹⁷⁾ Janke E. and Ende F., Tables of Functions, Dover, New york, 1945.

¹⁸⁾ Vander Ziel A., Dependence of flicker noise in MOSFETs on Geometry, Solid-state electionics, Vol. 20, p. 267, 1977.

$$\times \{-N_{t}c_{n}(\epsilon')f_{c\rho}(\epsilon')N_{c}(\epsilon')C_{\rho}(\epsilon') \\ +N_{t}e_{n}(\epsilon')f_{c\rho_{0}}(\epsilon')N_{c}(\epsilon')C_{n}(\epsilon')\} \times Sr_{f}(\omega)$$

$$+ \frac{\tau_{f}(\epsilon)}{1+j\omega\tau_{f}(\epsilon)} = \frac{\tau_{f}(\epsilon')}{1-j\omega\tau_{f}(\epsilon')} \frac{\tau_{0}}{1+j\omega\tau_{0}} \frac{1}{D_{0}}$$

$$\{-N_{t}e_{n}(\epsilon)f_{co}(\epsilon)N_{c}(\epsilon)C_{\rho}(\epsilon)+N_{t}e_{n}(\epsilon)f_{c\rho_{0}}(\epsilon)N_{c}(\epsilon)$$

$$C_{n}(\epsilon)\}Sr_{n}r_{f}(\epsilon,\omega) + \frac{\tau_{f}(\epsilon)}{1+j\omega\tau_{f}(\epsilon)} \frac{\tau_{f}(\epsilon')}{1-j\omega\tau_{f}(\epsilon)}$$

$$\frac{\tau_{0}}{1-j\omega\tau_{0}} \frac{1}{D_{0}} \{-N_{t}c_{n}(\epsilon')f_{co}(\epsilon')N_{c}(\epsilon')C_{\rho}(\epsilon')$$

$$+N_{t}e_{n}(\epsilon')f_{c\rho_{0}}(\epsilon')N_{c}(\epsilon')C_{n}(\epsilon')\}S_{rfrn}(\epsilon,\omega)$$

$$\cdots \cdots (2-29)$$

에서 $S_{rnrf}(\varepsilon,\omega)$ 와 $S_{rfrn}(\varepsilon,\omega)$ 는 $\gamma_n(t)$ 와 $r_f(t)$ 와의 클로스스펙트럼(Cross spectrum)이다.

式(2-8), (2-9), (2-10)에서 $Sr_1(x, x', \varepsilon, \varepsilon', \omega)$ 와 $Sr_3(x, x', \omega)$ 가 다음과 같다.

$$Sr_{1}(x, x', \varepsilon, \varepsilon', \omega) = \frac{4}{D_{0}} (C_{n}n_{1} + C_{p}p_{0})N_{t}C_{n}(\varepsilon)f_{\varepsilon o}(\varepsilon)$$

$$N_{\varepsilon}(\varepsilon)\delta(x - x')\delta(\varepsilon - \varepsilon')\frac{1}{A} \qquad (2-30)$$

$$Sr_{3}(x, x', \omega) = \frac{4}{D_{0}} (C_{n}n_{1} + C_{p}p_{0})(C_{n}n_{0} + C_{p}p_{1})$$

$$\delta(x - x')\frac{1}{A} \qquad (2-31)$$

$$Sr_{1}r_{3}(x, x', \varepsilon, \omega) = Sr_{3}r_{1}(x, x', \varepsilon, \omega) = \frac{-4}{D} (C_{n}n_{1} + C_{n}n_{2})$$

式(2-28), (2-29), (2-30), (2-31), (2-32)으로부터 열적평형 상태에 있는 n形 반도체에서 다음식을 얻을 수 있다.

 $+C_{\rho}p_{0})Ntc_{n}(\varepsilon)N_{c}(\varepsilon)\delta(x-x')\frac{1}{\Lambda}\cdots\cdots(2-32)$

$$S_{rn}(\omega) = \frac{4}{D_0} C_p p_0 (c_n n_0 + c_p p_1) \frac{L}{A} = 4 C_p p_0 \frac{L}{A}$$
.....(2-33)

$$S_{rnrf}(\varepsilon,\omega) = S_{rfrn}(\varepsilon,\omega)$$

$$=\frac{4}{D_0}C_P p_0 N_1 c_n(\varepsilon) f_{co}(\varepsilon) N_c(\varepsilon) \frac{L}{A} \cdots (2-35)$$

式(2-33), (2-34), (2-35)을 式(2-29)에 대입하면 $\omega \ll \frac{2\pi}{r_0} (n$ 形 반도체에서 $\simeq \frac{1}{c_\rho}$ 이다)에 대해 다음과 같은 결과를 얻는다.

$$\begin{split} & S \triangle f_{\epsilon}^{0}\left(\varepsilon, \varepsilon', \omega\right) N_{\epsilon}(\varepsilon) = \frac{4}{D_{0}} (C_{n} n_{1} + C_{p} p_{0}) \\ & = \frac{\tau_{f}(\varepsilon)}{1 + j \omega \tau_{f}(\varepsilon)} N_{t} c_{n}(\varepsilon) N_{\epsilon}(\varepsilon) \delta((\varepsilon - \varepsilon') \frac{L}{A} \cdots (2 - 36a) \end{split}$$

$$-\frac{4}{\mathsf{D_0}^2}(C_n n_1 + 2C_\rho p_0) \frac{\tau_f(\varepsilon)}{1 + j\omega\tau_f(\varepsilon)} \frac{\tau_f(\varepsilon')}{1 - j\omega\tau_f(\varepsilon')}$$

$$\mathsf{N}_t c_n(\varepsilon) f_{\varepsilon o}(\varepsilon) \mathsf{N}_c(\varepsilon) \mathsf{N}_t t^\varepsilon n(\varepsilon') \frac{\mathsf{L}}{\Delta} \cdots \cdots (2 - 36\mathsf{b})$$

式(2-36)을 式(2-37)에 대입하면 $\omega \ll \frac{2\pi}{\tau_0}$ 에 대한 excess noise 가 구해질 수 있다.

excess noise의 스펙트립의 크기와 스펙트립에 주화수 의존성은 $\omega_n(\epsilon)$ 와 $\tau(\epsilon)$ 의 함수형태만 주어진다면 결정될 수 있다.

구 일정에너지 표면을 갖고 있는 비축퇴된 반도체에 서는 $\tau(\epsilon)$ 와 $c_n(\epsilon)$ 가 다음과 같은 형태를 갖는다.

$$au(arepsilon) = a arepsilon^{lpha}$$
(2-37) $c_n(arepsilon) = b arepsilon^{eta}$ (2-38) 됐(2-37), (2-38)에서 $a,b,lpha,eta$ 는 $arepsilon$ 함수가 아

격자산란(lattics scattering)에 있어서 $\alpha=-\frac{1}{2}$, 불 순물 산란에 있어서 $\alpha=\frac{3}{7}$ 입을 알 수 있다. 11)

이러한 관계를 고려하여 式 (27)에 대입하여 정리하면 다음과 같다.

$$S_{1dex} = \frac{V_{d^2}}{L_3} A \left(\frac{q^2}{4\pi^3}\right)^2 \frac{1}{m^2} a^2 (1 + \frac{2}{3}\alpha)^2 \frac{1}{N_t b R}$$

$$\times \int_0^\infty \varepsilon^{2\alpha - \beta} \frac{1}{1 + \left(\frac{\omega}{b R N_t}\right)^2 \frac{1}{\varepsilon^2} \beta} f_{\epsilon \sigma}(\varepsilon) N_{\epsilon}(\varepsilon) d\varepsilon \cdots (2 - 39)$$

式 (2-39)에서 $R=\frac{1}{D_0}(c_nn_1+c_pp_0)$ 로 놓았으며 전도대의 최저에너지 E_c 를 0으로 놓고 무한대까지 적분국한을 취했다.

구일정에너지 표면을 갖고 있는 비축퇴된 반도체에서는 $N_{\epsilon}(\varepsilon)\alpha$ ε_{k} , $f_{\epsilon o}(\varepsilon)\alpha exp\left(-\frac{\varepsilon}{KT}\right)$ 의 관계가 있으므로 式(2~39)는 다음과 같이 고쳐 쓸 수 있다.

$$S_{Idex} = \frac{Vd^2}{L^3} A \left(\frac{q^2}{4\pi^3}\right)' \frac{1}{m^2} a^2 (1 + \frac{2}{3}\alpha)^2 \frac{1}{b N_t R} \int_0^\infty \varepsilon^{-\alpha + \beta + \frac{1}{2}} \frac{1}{2} \left(\frac{\varepsilon}{KT}\right) d\varepsilon$$

$$\times \frac{exp\left(-\frac{\varepsilon}{KT}\right)}{1 + \left(\frac{\omega}{NR_t b}\right)^2 \int_{-\epsilon/2\beta}^{\epsilon/2} d\varepsilon \qquad \cdots (2 - 40)$$

3. 결과에 대한 고찰

式(2-40)에서 $\alpha=-\frac{1}{2}$, $\beta\geq\frac{1}{2}$ 인 경우에 저구라 극한에서 플랜타유(Plateau)가 없은 $\frac{1}{f}$ 잡음을 얻을 수있으므로 본 논문에서는 $\alpha=-\frac{1}{2}$, $\beta=\frac{1}{2}$ 인 경우에만, 취급했다.

 $\alpha = -\frac{1}{2}$, $\beta = \frac{1}{2}$ 式(2-40) [·]代入하면 다음과 같은 式을 얻는다.

$$S_{Idex} = \frac{Vd^{2}}{L^{3}} A \left(\frac{q^{2}}{4\pi^{3}}\right)^{2} \frac{1}{m^{2}} a^{2} (1 + \frac{2}{3}\alpha)^{2} \frac{1}{bN_{t}R}$$

$$\times \int_{0}^{\infty} \frac{\frac{1}{\varepsilon} exp\left(-\frac{\varepsilon}{KT}\right)}{1 + \left(\frac{\omega}{bRN_{t}}\right)^{2} \frac{1}{\varepsilon}} d\varepsilon \qquad \cdots \cdots (3-1)$$

式(3-1)에서 $\left\{\varepsilon+\left(\frac{\omega}{bN_tR}\right)^2\right\}/KT=U,~X=\frac{\omega}{R\sqrt{KT}bN_t}$ 로 놓고 式 (3-1)를 변형하던 다음과 같은 式을 얻는다.

$$S_{Idex} = \frac{Vd^2}{L^3} A \left(\frac{q^2}{4\pi^3}\right)^2 \frac{1}{m^2} a^2 \left(1 + \frac{2}{3}\alpha\right)^2 \frac{1}{bN_t R} exp(\times)^2$$

$$\int_{x^2}^{\infty} exp(-u) du \qquad \cdots (3-2)$$

 式(3-2)에서 $exp(x)^2 \int_{x^2}^{\infty} du \frac{exp(-u)}{u}$ 의 특성을 함 수테이불 6에 의해 그림 (3-1)에 그려 놓았다.

 $eta=rac{1}{2}$ 인 비축퇴반도체(nondegenerate somiconductor)에서 $C_{p}=C_{n}=rac{2}{\sqrt{\pi}}\sqrt{KT}\ bN_{t}$ 의 관계와 N형 반도체에서 $R=rac{n_{1}}{n_{0}}\ll1$ 인 관계를 이용하면 $\omega\llrac{2\pi}{\tau_{0}}=4\sqrt{\pi}\sqrt{KT}\ bN_{t}$ 는 $\frac{\omega}{4\sqrt{\pi}\sqrt{KT}\ bN_{t}}\leq10R\ll1$ 을 의미하므로 式(3-2)은 $\omega\leq40\sqrt{\pi}\ R\sqrt{KT}\ bN_{t}$ 범위 내에서는 확실하다.

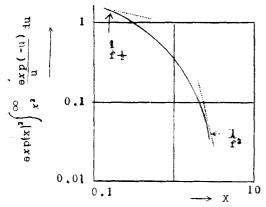


Fig. 3—1 Characteristic of $\frac{1}{f}$ -type noise spectrum. 式(3—2)와 그림 (3—1)에서 다음과 같은 사실을 볼 수 있다.

 $S_{Idex}(\omega)$ 는 저주파에서 $\frac{1}{f_1}$ 에 비례함을 알 수 있고 17 , 지금까지 실험적으로 입증하지 못한 저주파 극한에서

어떤 plateau도 보여주지 않는다.

 $S_{Idex}(\omega)$ 는 채널의 단면적 A에 비례하고, 채널의길이 L^3 에 반비례한다. 이와 비슷한 결과를 기존 논문에서 볼 수 있다. $^{18)}$ $S_{Idex}(\omega)$ 가 Vd^2 에 비례한다. 이러한 결과는 $\frac{1}{f}$ 잡음 이론에서 공통적으로 나타난다.

전이 주파수(transition frequency)를 ω_{tr} 라고 하면 $\frac{1}{f_1}$ —응답에서 $\frac{1}{f^2}$ —응답에 대응하는 잡음 스펙트럼은 $\omega_{tr}=R\sqrt{KT}\,bN_t$ 근방에서 일어난다.

Recombination center 에 관계되는 시간완화에 대응하는 주파수 ω_{0} 는

$$\omega_0 = \frac{2\pi}{\tau_0} = 2\pi C_n = 4\sqrt{\pi}\sqrt{\text{KT}} \cdot b N_t$$
 . . . $\frac{\omega_0}{\omega_{tr}} = 4\sqrt{\pi}/R = 4\sqrt{\pi}n_0/n_1\gg 1$ 임을 알 수 있다. 이러한 사실로 Feieht 와 Jantsch⁸⁾에 의해 증명되었다. $S_{tdx}(\omega)$ 는 $\omega>\omega_{tr}$ 에서는 N_t 가 증명하면 증가함을 보여주고 $\omega<\omega_r$ 에서는 N_t 가 증명하면 감소함을 보여준다.

4. 결 론

본 논문의 모델에서는 시간에 따라 변화하는 양을 포함시키므로써 각 에너지대의 케리어에 의한 준페르 미준위(quasi-Fermi level)가 정의될 수 없다는 가정 하에서 Mcwhorter's surface model 과는 달리 단일 준위 shockley-Read-Hall recombination center 를 가 정하고 $\frac{1}{f}$ 잡음을 산출할 수 있었다.

결과식 (3-2)은 $\frac{Vd^2\mathbf{A}}{L^3}$ 에 비례하고 저주파 극한에서 어떤 Plateau도 보여주지 않았다.

본 논문의 모델은 $\frac{1}{f'}$ - 응답에서 $\frac{1}{f^2}$ - 응답에 이르기 까지의 잡음스펙트럼의 전이주파수와 P-n 접합에서 표면센타에 관계되는 완화시간에 대응하는 주파수를 구별할 수 있었다.

본 논문의 결과에서 $\frac{1}{f}$ - 형 잡음스펙트럼은 격자산란이 주 원인이 된다.

금속산화물반도체 전계효과 트랜지스터를 살펴보면 격자산란이 주로 표면에서 일어나기 때문에 $\frac{1}{f}$ - 형 작음이 표면효과라고 말할 수 있다.

또한 본 논문의 모델에서는 $\frac{1}{f}$ 잡음이 다수케리어에 의해 일어남을 알 수 있다.

 $\alpha = -\frac{1}{2}$, $\beta > \frac{1}{2}$ 인 경우에 대해서는 본 논문에 다루지 않았다. 이러한 경우에 대해서도 더욱 더 연구해보고자 한다.