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요   약

신호처리에서 확률을 성능기 으로 하는 응 알고리듬들은 충격성 잡음 환경에서 우수한 성능과 안정된 수

렴을 보인다. 이 논문에서는 MSE 성능기 과 비교분석을 통해 확률 성능기 이 MSE와 동일한 최 해를 가진

다는 것을 증명한다. 한 이 연구를 통해, 확률 기반 알고리듬의 크기 조정된 입력이 충격성 잡음으로부터 최

해가 방해 받지 않도록 유지해주는 역할을 하고 있음을 보인다.       
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ABSTRACT

In signal processing, the zero-error probability (ZEP) criterion and related algorithm (MZEP) outperforms 

MSE-based algorithms and yields superior and stable convergence in impulsive noise environment. In this paper, 

the analysis of the relationship with MSE criterion proves that ZEP criterion has equivalent optimum solution of 

MSE criterion. Also this work reveals that the magnitude controlled input of MZEP algorithm plays the role in 

keeping the optimum solution undisturbed from impulsive noise. 
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Ⅰ. Introduction

Besides the harsh problems such as multipath 

propagation and severe fading in wireless network 

communication environment, impulsive noise from a 

variety of sources affects the links
[1-3]. Many signal 

processing algorithms designed on the basis of MSE 

criterion may fail when impulsive noise is present
[4]. 

As an alternative to the MSE, the zero-error 

probability (ZEP) criterion has been introduced in 

[5]. By maximization of ZEP (MZEP) and steepest 

descent method, the MZEP algorithm has been 

developed for communication systems with 

impulsive noise and channel distortions. For 

application for underwater communication channels, 

the nonlinear MZEP has been proposed to 

compensate for ISI without error propagation
[6]. 

One drawback of MZEP in which weights are 

calculated based on block processing method is a 

heavy computational burden. In the work in [7] a 

method utilizing the current gradient in estimation of 

the next gradient has been proposed and shown that 

its computational complexity can be significantly 

reduced.  
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Fig. 1. Base-band communication system model 

Fig. 2. ZEP-based equalizer with IMC (Input Magnitude 
Controller) 

Though the ZEP based adaptive algorithms have 

improved so as to be better suited to practical 

situations and problems, any analysis of its optimum 

solutions and their behavior has not been carried 

out. 

In this paper, through the analysis of its optimum 

weight behavior being compared with the MSE 

criterion, we will uncover some properties and 

factors that play the role in robustness against 

impulsive noise.

Ⅱ. System Model and MSE Criterion 

In communication systems, a symbol point is 

transmitted and distorted through the wireless 

channel, and noise kn  is added to the channel 

output as depicted in baseband model in Fig. 1. The 

multipath channel )(zH  can be expressed as 
i

i zhzH −∑=)(  in z-transform. With the noise 

being added to the distorted channel output, the 

equalizer input becomes as kikik ndhx += −∑ [8]. 

When we assume that the equalizer structure is TDL 

(tapped delay line) with L weights, the output ky  at 

time k can be expressed as k
T
kky XW=  with the 

input 
T

Lkjkkkk xxxx ],...,,...,,[ 11 +−−−=X  and weight

T
kLkjkkk wwww ],...,,..,,[ ,1,,1,0 −=W . 

The difference between the transmitted symbol 

point kd  and the output ky  is defined as error ke  

as in (1). Then the MSE criterion MSEP  is defined as 

the expectation of error power[8].

k
T
kkkkk dyde XW−=−= (1)

][ 2
kMSE eEP = (2)

Instead of taking (2), minimization of the instant 

power of system error ke  with respect to weight is 

employed as a cost function which is efficient for 

implementation in the well-known LMS algorithm. 

While the influence of the Gaussian noise can be 

mitigated owing to the expectation or mean 

operation ][⋅E  in (2), impulsive noise may defeat 

the averaging operation since a single large impulse 

can dominate the mean operation. Therefore 

impulsive noise can lead algorithms based on the 

MSE criterion to become unstable. This indicates 

that the instant error power 
2
ke  without being 

averaged may cause worse instability in the system. 

The gradient of the MSE criterion becomes  

][2][2 kkk
T
kk

MSE dEEP XWXX
W

−=
∂

∂
(3)

Letting the gradient be zero, we obtain the 

optimum weight vector for MSE criterion as

][
][

T
kk

kko
MSE E

dE
XX
XW = (4)

On the other hand, the correlation between error 
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and input is

][][][ T
kkkkkkk EdEeE XXWXX −= (5)

In the minimum MSE with 
oW , we have the 

following two conditions. 

0=
∂

∂
W
MSEP

and 0][ =kkeE X (6)

Ⅲ. ZEP Criterion and Optimum Weight

As another cost function to be minimized, ZEPP
the criterion of  zero-error probability is defined as 

)0( == efP EZEP (7)

 

The maximization of )0( =efE  forces error 

samples to be concentrated on zero. More 

importantly, the error PDF )( CMEE ef  is 

significantly less sensitive to strong impulses 

estimation method using Gaussian kernel (with the 

kernel size σ ) and a block of N  error samples  

},...,,...,,{ 11 +−− Nkikk eeee as described in the work 
[9].

∑
+−=

−−
=

k

Nki

i
ZEP

ee
N

P
1

2

2

]
2

)(exp[
2

11
σπσ

(8)

For maximization of )0( =efE  the steepest 

descent method is employed and it leads to the 

following MZEP (maximum ZEP) algorithm with 

the step-size MZEPμ  that controls the system 

stability.     

W
WW

∂
∂

+=+
ZEP

MZEPkk
Pμ1 (9)

The gradient in (9) can be expressed as 

∑
+−=

⋅⋅⋅=
∂

∂ k

Nki
iii

ZEP eGe
N

P
1

2 )(11 X
W σσ

(10)

Since the right term in (10) can be considered as 

a time-averaged version of ])([ kkk eGeE X⋅⋅ σ , 

we may have

])([1
2 kkk

ZEP eGeEP X
W

⋅⋅⋅=
∂

∂
σσ

(11)

In the steady state, we have the following two 

conditions as

0=
∂

∂
W
ZEPP

 or 0])([ =⋅⋅ kkk eGeE Xσ (12)

  

Comparing 0][ =kkeE X  in (6) for MSE 

criterion and 0])([ =⋅⋅ kkk eGeE Xσ  in (12) for 

ZEP criterion, we may consider that kkeG X⋅)(σ  

in (12) implies that input kX  is attenuated by 

)( keGσ . This leads us to define the 

magnitude-controlled input 
A
kX  as 

kk
A
k eG XX ⋅= )(σ (13) 

Figure 2 depicts the MZEP equalizer with the 

input magnitude controller (IMC) for 
A
kX . The 

kernel 
]

2
exp[

2
1)( 2

2

σπσσ
k

k
eeG −

=
 is always positive and 

is a function of an exponential decay with the error 

power 
2
ke . An excessively large value of error 

power means the presence of a strong impulse 

within the input kX . This kind of large input can 

cause instability in the system.

Through the magnitude control process 

kkeG X⋅)(σ in (16), the magnitude of the input 

kX  is controlled for the weight update by a scale 

factor )( keGσ which is inversely proportional to the 

error power. 

Then the gradient (10) and weight update 
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Fig. 3. Gaussian kernel and error samples gathered 
around zero. 
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Fig. 4. Impulsive noise for the examination of weight 
behavior in the steady state (after convergence). 

equation (9) can be rewritten as 

∑
+−=

⋅−⋅=
∂

∂ k

Nki

A
ii

T
ik

ZEP d
N

P
1

2 )(11 XWX
W σ

(14)

∑
+−=

+ ⋅⋅+=
k

Nki

A
ii

MZEP
kk e

N 1
21

1 XWW
σ

μ
(15)

Letting the gradient (14) be zero, we obtain the 

optimum weight vector 
o
ZEPW  for ZEP criterion as

∑

∑

∑

∑

+−=

+−=

+−=

+−= == k

Nki

T
iii

k

Nki
iki

k

Nki

T
i

A
i

k

Nki

A
ik

o
ZEP

eG
N

deG
N

N

d
N

1

1

1

1

)(1

)(1

1

1

XX

X

XX

X
W

σ

σ

(16)

In the steady state, we may assume that most of 

the error samples are located at around zero as 

depicted in Fig. 3. This assumption leads us to treat  

)( keGσ as a constant πσ 2
1

.  

As a typical algorithm using the MSE criterion, 

LMS (least mean square) is to minimize the instant 

error power 
2
ke  instead ][ 2

keE  for practical reasons 
[8]. Then the gradient of LMS becomes  

kk
k ee X

W
2

2

−=
∂
∂

(17)

 

Letting (17) be zero, we obtain the optimum 

weight vector 

T
kk

kko
LMS

d
XX
XW = (18)

 

The two optimum weights (16) and (18) as in 

practical algorithms become equivalent by taking the 

statistical average ][⋅E to them as

][
][][ T

kk

kko
ZEP E

dEE
XX
XW = (19)

The equation (19) indicates 

o
MSE

o
LMS

o
ZEP EE WWW == ][][ (20) 

In the aspect of computational complexity, the 

MZEP has )(NO  operations for the weight update 

due to the summation as in (15) while the LMS 

algorithm in (17) has no such summations at all.  

Since the recursive gradient estimation proposed in 

[7] can be employed in MZEP, its computational 

complexity can become similar to LMS because the 

summation operation is not needed.   

On the other hand, the equation (16) reveals 

another important property in the situation of large 

error occurrence such as impulsive noise. Since the 

steady state weight vectors can be considered to be 

reached the optimum state, it is worthwhile to 

investigate whether the steady state weight vector 

can keep the optimum weight value under impulsive 

noise situations. From this point of view, it is 
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Fig. 5. Behavior of weight values in steady state  under 
impulsive noise.

reasonable to see that 
eSteadyStat

ZEPW  can stay in the 

value of 
o
ZEPW  thanks to magnitude-controlling 

)( keGσ and time-average process ∑
+−=

k

NkiN 1

1
, 

whereas the steady state weight of LMS can be 

fluctuated since a single large impulse can afflict 

(17) directly. These properties are examined by 

observing the behavior of steady state weight vectors 

under impulsive noise situations in the following 

section.        

Ⅳ. Simulation Results and Discussion

In this section, it will be investigated how the 

steady state weight vectors behave under impulsive 

noise situations. We use the same signal processing 

environment as in [7] except that impulse noise is 

applied after convergence, that is, in the steady state. 

The symbol point set to be transmitted is 

{ }3,1,1,3 4321 ==−=−= dddd . The random symbol 

point kd  at time k is transmitted through the 

multipath channel 
21 304.0903.0304.0)( −− ++= zzzH . 

Then the additive Gaussian white noise (AWGN) is 

added to the channel output. The impulse noise add

ed after convergence (from k = 8000) is generated 

according to the work [4] with 001.502
2 =σ and 

incident rate 01.0=ε . The variance of the 

background AWGN is 0.001 and the distribution 

function of overall noise kn  is (21) and is depicted 

in Fig. 4. 

]
2

exp[
2

1]
2

exp[
2

)( 2
1

2

1
2
2

2

2 σπσ
ε

σπσ
ε kk

kN
nnnf −−

+
−

= (21)

This channel–distorted and noise-added signal is 

used as an input kx to the TDL equalizer with L=11. 

The sample size N for the MZEP algorithm is 20, 

the kernel size σ is 0.8. The convergence step-sizes 

are μMZEP = 0.004 for MZEP algorithm and μLMS =

0.001for LMS algorithm. All the parameter values 

are chosen to produce the lowest steady state MSE 

in this simulation. 

Figure 4 shows that the AWGN is present 

throughout the sample time and the impulses added 

after k = 8000. The trace of kw ,4  and kw ,5  (the 

other tap weights are not included just for the 

page-limit) in Fig. 5. It is observed that the steady 

state weight of LMS algorithm shows abrupt 

changes at the exact time of each impulse 

occurrence by the amount being proportional to its 

impulse intensity. In the weight traces of MZEP, 

each tap weight presents no fluctuations under the 

strong impulses. This result shows that the dominant 

role in the robustness against impulsive noise is the 

IMC.

Ⅴ. Conclusion 

The MZEP algorithm outperforms MSE-based 

algorithms in supervised signal processing in most 

equalization applications. Particularly in impulsive 

noise environment, its performance is superior. In 

this paper, through analysis of the relationship with 

MSE-based optimum solution and behavior of 

optimum weight, it has been proven that the 

optimum solution of ZEP criterion is equivalent to 

the one of MSE criterion. This work has also 

revealed that the magnitude controlled input of 

MZEP plays the role in keeping the optimum 

solution undisturbed from impulsive noise. 

Investigation of the detailed characteristics of the 

magnitude controlled input in future study is 
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demanded to lead the ZEP-related adaptive 

algorithms to finding more enhanced methods and 

their application fields.         
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