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Optimum Conditions of Adaptive Equalizers Based on Zero-Error
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ABSTRACT

In signal processing, the zero-error probability (ZEP) criterion and related algorithm (MZEP) outperforms
MSE-based algorithms and yields superior and stable convergence in impulsive noise environment. In this paper,
the analysis of the relationship with MSE criterion proves that ZEP criterion has equivalent optimum solution of
MSE criterion. Also this work reveals that the magnitude controlled input of MZEP algorithm plays the role in

keeping the optimum solution undisturbed from impulsive noise.

communication systems  with

I . Introduction developed  for

impulsive noise and channel distortions. For

Besides the harsh problems such as multipath
propagation and severe fading in wireless network
communication environment, impulsive noise from a
variety of sources affects the links"™". Many signal
processing algorithms designed on the basis of MSE
criterion may fail when impulsive noise is present™.

As an alternative to the MSE, the zero-error
probability (ZEP) criterion has been introduced in
[5]. By maximization of ZEP (MZEP) and steepest

descent method, the MZEP algorithm has been

application for underwater communication channels,

MZEP has

compensate for ISI without error propagation[ﬂ.
One drawback of MZEP in which weights are

calculated based on block processing method is a

the nonlinear been proposed to

heavy computational burden. In the work in [7] a
method utilizing the current gradient in estimation of
the next gradient has been proposed and shown that
its computational complexity can be significantly

reduced.
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Fig. 1. Base-band communication system model

Though the ZEP based adaptive algorithms have
improved so as to be better suited to practical
situations and problems, any analysis of its optimum
solutions and their behavior has not been carried
out.

In this paper, through the analysis of its optimum
weight behavior being compared with the MSE
criterion, we will uncover some properties and
factors that play the role in robustness against

impulsive noise.
II. System Model and MSE Criterion

In communication systems, a symbol point is
transmitted and distorted through the wireless
channel, and noise Ny is added to the channel
output as depicted in baseband model in Fig. 1. The
multipath channel H(z) can be expressed as
H(z) :Zhiz" in z-transform. With the noise
being added to the distorted channel output, the

equalizer input becomes as Xk ~ Z hdy; +ns
When we assume that the equalizer structure is TDL

(tapped delay line) with L weights, the output Yi at

-
time K can be expressed as Yo = Wk Xk with the

X, =[kakav---'kajr---vxkan]T

input and weight

Wk :[Wo,k’Wl,k""Wj,k""’WL—l,k]T,

The difference between the transmitted symbol
point dk and the output Yk is defined as error Sk
as in (1). Then the MSE criterion Puse is defined as

the expectation of error powerm.

1866

ekzdk_Ykzdk_WkTXk )]
PMSE = E[ekZ] @

Instead of taking (2), minimization of the instant
power of system error € with respect to weight is
employed as a cost function which is efficient for
implementation in the well-known LMS algorithm.
While the influence of the Gaussian noise can be

mitigated owing to the expectation or mean

operation E[] in (2), impulsive noise may defeat
the averaging operation since a single large impulse
can dominate the mean operation. Therefore
impulsive noise can lead algorithms based on the
MSE criterion to become unstable. This indicates

2
that the instant error power €& without being
averaged may cause worse instability in the system.
The gradient of the MSE criterion becomes

OP,
ﬁZZE[XkXI]Wk - 2E[d, X,] 3)

Letting the gradient be zero, we obtain the

optimum weight vector for MSE criterion as

o _ E[dX]

MSE = E[XKXI] 4)

On the other hand, the correlation between error

Fig. 2. ZEP-based equalizer with IMC (Input Magnitude
Controller)
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and input is
E[ekxk]= E[dkxk]_WkE[XkX-I[] 5)

In the minimum MSE with W?°, we have the

following two conditions.

alDMSE

W =0 and E[eX,]=0 (6)

. ZEP Criterion and Optimum Weight

As another cost function to be minimized, PZEP

the criterion of zero-error probability is defined as

PZEP = fE (e = O) @)

The maximization of fE (e = 0) forces error
samples to be concentrated on zero. More
fo(Cove) s
significantly less sensitive to strong impulses

importantly, the error PDF

estimation method using Gaussian kernel (with the
kernel size O ) and a block of N error samples

{ec. e i€
[9].

ek—N+l}aS described in the work

k

1
exp[
ZEP ZN:+1 o /72

(e e) 1 ®

fe(e=0)
descent method is employed and it leads to the
following MZEP (maximum ZEP) algorithm with

For maximization of the steepest

the step-size AHwmzep that controls the system

stability.

6PZEP

W, =W, +
K+l = Huzer —ma, Yy,

®

The gradient in (9) can be expressed as

OPyep _ i

Kk
W GZNZ G, (e) X 0
N+

Since the right term in (10) can be considered as
a time-averaged version of E[ek ’Gg (ek) : Xk],

we may have

al:)ZEF’

1
S Bl G,e) XD ap

In the steady state, we have the following two

conditions as

aPZEP

W =0 or E[e, -G, (e) X, ]=0 (12

Comparing E[ekxk] =0 in (6) for MSE
criterion and E[8 -G, (&) X(1=0 (12) for
G, (&) X,

ZEP criterion, we may consider that

in (12) implies that input Xy is attenuated by

Go‘ (ek). This leads us to define the

magnitude-controlled input XkA as
Xy =G, (&) X, 13)

Figure 2 depicts the MZEP equalizer with the
A
input magnitude controller (IMC) for Xk. The
2
G, (e ex|
kernel (8= o'ﬁ p[ZG ] is always positive and

is a function of an exponential decay with the error

2
power €. An excessively large value of error

power means the presence of a strong impulse

within the input Xk. This kind of large input can

cause instability in the system.

Through the magnitude control  process

Go‘ (ek)‘xkin (16), the magnitude of the input

Xy is controlled for the weight update by a scale

factor G, (ek) which is inversely proportional to the

error power.
Then the gradient (10) and weight update
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Fig. 3. Gaussian kernel and error samples gathered
around zero.

equation (9) can be rewritten as

Letting the gradient (14) be zero, we obtain the

o)
optimum weight vector WZEP for ZEP criterion as

K K
1 zdkqu 1 ZGa(ei)dei
WZOEP — N i=k—N+1 — N i=k—N+1
K K
SYXXT 36, e)XX]
N N N N
(16)

In the steady state, we may assume that most of
the error samples are located at around zero as
depicted in Fig. 3. This assumption leads us to treat

G, (ek)as a constant }/G\/Zﬂ'-

As a typical algorithm using the MSE criterion,
LMS (least mean square) is to minimize the instant

2 2
error power € instead E[ek] for practical reasons

Bl Then the gradient of LMS becomes

2
B _ e X, (17
oW

Letting (17) be zero, we obtain the optimum

weight vector

1868

. dX
Wys = ka xk[ (18)

The two optimum weights (16) and (18) as in
practical algorithms become equivalent by taking the

statistical average El1to them as

E[dX,]

E[We,]=
XX

19)

The equation (19) indicates
E[W;EP] = E[WI(.)MS] = WI&SE 20)

In the aspect of computational complexity, the

MZEP has O(N) operations for the weight update
due to the summation as in (15) while the LMS
algorithm in (17) has no such summations at all.
Since the recursive gradient estimation proposed in
[7] can be employed in MZEP, its computational
complexity can become similar to LMS because the
summation operation is not needed.

On the other hand, the equation (16) reveals
another important property in the situation of large
error occurrence such as impulsive noise. Since the
steady state weight vectors can be considered to be
reached the optimum state, it is worthwhile to
investigate whether the steady state weight vector
can keep the optimum weight value under impulsive
noise situations. From this point of view, it is

204
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Fig. 4. Impulsive noise for the examination of weight
behavior in the steady state (after convergence).
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SteadyState
W22

reasonable to see that VVzep can stay in the

value of WgEP thanks to magnitude-controlling
1 K
Ga (ek)and time-average process Wi:k_Nﬂ,
whereas the steady state weight of LMS can be
fluctuated since a single large impulse can afflict
(17) directly. These properties are examined by
observing the behavior of steady state weight vectors
under impulsive noise situations in the following

section.
IV. Simulation Results and Discussion

In this section, it will be investigated how the
steady state weight vectors behave under impulsive
noise situations. We use the same signal processing
environment as in [7] except that impulse noise is
applied after convergence, that is, in the steady state.
The symbol point set to be transmitted is
{d,=-3,d,=-1,d,=1,d, =3}. The random symbol
point dk at time k is transmitted through the
multipath channel H(2) =0.304+0.903z* +0.304z %
Then the additive Gaussian white noise (AWGN) is
added to the channel output. The impulse noise add

ed after convergence (from k = 8000) is generated

2
according to the work [4] with O =50.0013nd

incident rate€ =0.01. The variance of the
background AWGN is 0.001 and the distribution

154 A T
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Fig. B. Behavior of weight values in steady state under
impulsive noise.

function of overall noise Mk is (21) and is depicted

in Fig. 4.
(1) = — — exp[= e 178 el ] e
N oo 200" o\27 207}

This channel - distorted and noise-added signal is

used as an input Xk to the TDL equalizer with L=11.
The sample size N for the MZEP algorithm is 20,
the kernel size ¢ is 0.8. The convergence step-sizes
are tuzer = 0.004 for MZEP algorithm and zyms =
0.001for LMS algorithm. All the parameter values
are chosen to produce the lowest steady state MSE
in this simulation.

Figure 4 shows that the AWGN is present
throughout the sample time and the impulses added
after k = 8000. The trace of Wax and Wsx (the
other tap weights are not included just for the
page-limit) in Fig. 5. It is observed that the steady
state weight of LMS algorithm shows abrupt
changes at the exact time of each impulse
occurrence by the amount being proportional to its
impulse intensity. In the weight traces of MZEP,
each tap weight presents no fluctuations under the
strong impulses. This result shows that the dominant
role in the robustness against impulsive noise is the
IMC.

V. Conclusion

The MZEP algorithm outperforms MSE-based
algorithms in supervised signal processing in most
equalization applications. Particularly in impulsive
noise environment, its performance is superior. In
this paper, through analysis of the relationship with
MSE-based optimum solution and behavior of
optimum weight, it has been proven that the
optimum solution of ZEP criterion is equivalent to
the one of MSE criterion. This work has also
revealed that the magnitude controlled input of
MZEP plays the role in keeping the optimum
solution  undisturbed from impulsive noise.
Investigation of the detailed characteristics of the

magnitude controlled input in future study is
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demanded to lead the ZEP-related adaptive
algorithms to finding more enhanced methods and

their application fields.
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