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Performance Analysis of Correntropy-Based Blind Algorithms
Robust to Impulsive Noise
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ABSTRACT

In blind signal processing in impulsive noise environment the maximum cross-correntropy (MCC) algorithm
shows superior performance compared to MSE-based algorithms. But optimum weight conditions of MCC
algorithm and its properties related with robustness to impulsive noise have not been studied sufficiently. In this
paper, through the analysis of the behavior of its optimum weight and the relationship with the MSE-based LMS
algorithm, it is shown that the optimum weight of MCC and MSE-based LMS have an equal solution. Also the
factor that keeps optimum weight of MCC undisturbed and stable under impulsive noise is proven to be the

magnitude controlled input through simulation.

I. Introduction properly because of large instantaneous errors and

[3]

instability

Multipath propagation in wireless channel and
impulsive noise from a variety of sources affects the
(21

. the

environment with impulsive noise, many signal

communication systems adversely In

processing methods based on MSE fail to function

As an alternative to the MSE criterion, the
correntropy criterion similar to auto-correlation has
The (CO)

concept can be expressed with inner products of two

. 3 N
been introduced™. cross-correlation

different distribution functions constructed by kernel
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density estimation methods with Gaussian kernel
341, Through maximization of CC (MCC) with
steepest descent method and a set of symbol
samples generated randomly at the receiver, the
MCC
channel equalization in the environment of impulsive
noise and multipath distortions"".

One of the drawbacks of MCC algorithm is heavy

computational complexity related with summation

algorithm has been developed for blind

operations at each iteration time since gradients are
calculated based on block processing method. This
problem of computational complexity has been
significantly reduced in the work [6] by utilizing
recursive estimation of the gradient. Though the
MCC algorithm has been developed to be better
suited to practical situations and problems, analytic
research on its optimum solutions and their behavior
has not been carried out yet deterring further
enhancement of the algorithm.

II. MSE Criterion and MCC Algorithm

As depicted in Fig. 1, the baseband model of

communication system, the transmitted symbol point
de at time k is distorted by the channel’s multipath
fading and added noise ™. For the multipath
channel model H(@=2Nhz" in z-transform, the

equalizer input % becomes (1)

X, = hd_ +n, )

With the TDL (tapped delay line) equalizer

structure, the

X =[kaxk—1r---rxk—1 v---rxkaA]T

input vector

and weight vector
Wi =W Wagooes Wi oW il the output is expressed
as Yo=XW, and the error & is

g =d, -y, =d - X W, @

Then the MSE criterion Pue is defined as a

« = 2
statistical average El1 of squared error &’ .

Fig. 1. Base-band communication system and adaptive
equalizer structure

Pue = E[&°]

= B[+ W EDG X IW - 2W(Ed X, ] )

Py
oW be zero, the optimum

Letting the gradient

W

[0}
weight vector MsE for MSE criterion can be

obtained™.

o _ El4X,]
"= TEXX] @

(o]
Inserting this optimum weight Wye in the

correlation E[ek X k ] leads to

Ele X, ]=E[dX,] _WkE[xlxk] =0 ()

As a typical algorithm based on the MSE
criterion, LMS (least mean square) is to use the

2
instant error power e instead of El&] for
practical reasons”’. Then the gradient of LMS

becomes

qu — zq( a(dk — yk)
ow oW

=-26X, =—2(dk—XIWk)Xk (6)
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And

2

0
Wk+1:Wk_ﬂ'ﬁ:Wk+2ﬂ'eka 7

The optimum weight vector of LMS algorithm

(o}
LMs can be obtained as below by letting the

oe?
gradient pw in (6) be zero.

d X
Wins =y~ ®)
LMS XIXk
And
) E[d, X,] )
E[Wivs] = E[XI;Xk ] =Wy )
KNk

While taking the averaging operation E[] o ®)
can mitigate the influence of the Gaussian noise on
the steady state weights, non-Gaussian noise such as
impulsive noise may defeat the averaging operation
because even an impulse can dominate the mean
operation. Therefore algorithms based on the MSE
criterion can become unstable under impulsive noise
environment.

Among blind algorithms known for its robustness
against impulsive noise, a blind algorithm based on
MCC criterion and a random symbol set has been
developed for impulsive noise environment'”. We

assume that M symbol points are equally likely to

be transmitted a priori with a probability }{/I , and

the  transmitted symbol  points An are
Aﬂ:2m—1—M , m=12,...M . Since
modulation schemes are normally known to
receivers, the receiver generates a set of random
T
:[dl’dZ""'dN] in order for
the MCC method to have the same distribution as

symbol samples Dy

the transmitted symbol points {An}[ﬂ. For that

purpose, the number of random symbol samples

2326

corresponding to each symbol point A\n is

N/M . Then the probability density can be

constructed based on Kernel density estimation'".

fD(d)=iZ lzﬂeXp[_(i;fIi)] (10)

N i-1 O

The cross-correntropy concept can be expressed
with inner products of two different probability
density functions constructed by Gaussian-kernel
density ~ estimation  methods'. Then  the

cross-correntropy  criterion ~ with  the  output

distribution & (¥) and  To(d) in (10) is

[fo@f,(@)da

Led 1 —d-yy
BIR IR Dy i e B

For maximization of the cross-correntropy
(MCC), the gradient can be utilized.

0 j fy(a) f,(a)da
oW

¥
Rl L

With the gradient (12), the MCC algorithm is
expressed as

of fy(a)f,(@)da
oW

13)

W =W, +u

. Weight Behavior of MCC Algorithm

The term N i I<Zn;+(1) in (12) can be considered as

a sample-averaged version of E[1 so that the

0 j fy(@)f,(@)da

optimum condition oW leads to
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N —(d; - )’ trolled value of Xk according t I
E d —v.)-ex i w120 (14 controlled value o according to error values.
[>(d; - ) Pz X (14 .
For example, when SS error “ik has a very large
value due to some strong noise like impulses, the
In (14), the term dj ~ Y« means how far the a2
exp(——5)
current output Yk is from each symbol sample exponential 4c%’ becomes very small (the

N exponential function is a decay function of SS error
dj. Since A/I samples of dj are located in each

power) and the current input Xy is mitigated by the

transmitted symbol point An as depicted in Fig. 2, )

the term Y =Yk corresponds to the distance multiplication of 452’ . This process of input
between the current Yk and symbol points magnitude control is depicted in Fig. 3, defining
(A,---.Aw ). From this perspective, we may define Xl k as a magnitude controlled input.
the difference dj ~Y as an error Sik for each )
MC j K
symbol sample dj. For convenience sake, this error X ik = 12 (16)
ej k will be referred to as symbol sample
MC
(SS) error. N SS errors are produced from the With the definition Xj,k and (12), the MCC
symbol space at each iteration time as in Fig. 2 for algorithm can be rewritten as
a simple case of M =4and N=16. Then, (14)
can be written as k N
MC
Wea =W, +—— 3f 2 2e X an
N TC i=k-N+1, j=1
2
] k
= 15
E[Zel k eXp( ) Xk] (1) It is noticed in (17) that the magnitude controlled
XJ k plays the role in stabilizing the algorithm in
—ejz,k situations of large error occurrence when compared
The term &P 352X that is, X multiplied : .
4o , > p with the LMS algorithm in (7) though the two
_ejzk algorithms have a very similar form that comprises
by exp( 452 ) can be considered as a magnitude error and input.
Fig. 2. Symbol space and error samples for N =16 and
M=4. Fig. 3. Input magnitude controller
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The steady state condition (15) becomes
c MC
E[D e, X{%1=0 (18)
=1

It is also observable when we compare (5) with
(18) the optimum condition of MCC is very similar
to MSE criterion except the summation process over
symbol samples and the magnitude controlled input
Xk,

From (12), the optimum condition becomes

K N
2 2. =Xiwe)-XF =0 (19)

i=k-N+1, j=1

k N
2 2XIweXIE o)

i=k-N+1, j=1

K N MG
Z Zdj Xy =

i=k-N+1, j=1

The optimum weight for MCC algorithm is

> dxie
WOZ |:k—kN+l, :\1:1 - - (21)
XT .M

In the steady state, we may assume that most of
the error samples are located at around zero as
depicted in Fig. 4.

2

j.k
This assumption leads us to treat exp( Ao ? )

as

a constant. That is, in the steady state,

Fig. 4. Exponential function and error samples gathered
around zero.
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(22)

k—x
limXJe =X, @3)

Using (22) and (23), we may rewrite the expected

value of optimum weight E[W°] for (21) as

Z E[Zd XM

E[W ]_ i=k— N+1 j=1
Z E[ZxT -XET
i=k—N+1, j=1
N
E[d
Py 1_ % N
- N T
j=1
The equation (24) indicates
E[W°] = E[Wius] = Wy @5)

From the perspective of large error situation such
as due to impulsive noise, the equation (21) gives
another important property that the magnitude

MC
controlled Xjk both in the nominator and
denominator cuts outliers that are abnormally large
input contaminated with large noise. This in turn

makes W ° remain stable without wild fluctuation in
the steady state. Compared to the optimum weight
of MCC, the one of LMS algorithm (8) has no
protection measures against damage from large
errors or impulsive noise. Assuming optimum
condition that most error samples are located at
around zero in the steady state, this property will be
discussed through observations of the behavior of
steady state weight (21) and (8) under impulsive
noise situations in the following section.

IV. Results and Discussion

In this section, For the observation of the
behavior of the steady state weights (21) and (8)
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the

environment of [7] with the impulse noise being

under impulsive noise situations, channel
applied in the steady state is used in this paper as

depicted in Fig. 5. The symbol point set in the
transmitter  is {dl =-3d,=-1d;=1d, = 3}

and a symbol point dy is transmitted at time k

through the channel models as

H,(z)=0.26+0.93z* +0.262 26)

H,(2) =0.304 + 0.903z* +0.304z* @27

The additive Gaussian white noise (AWGN) is
added to the channel output throughout the whole
time as a background noise. The impulse noise is
added after convergence (8000) as in Fig. 5. The

impulsive noise Ny s generated according to the

following PDF of Gaussian mixture model®.

2

1-¢ —nk2 & — N,
f =———exp—%- -
norise) q@epoUf]+O'2\/Zexp20§]

(28)

_ _ [ =2 2
where £<1, 01=0gn, 02=+0cen T Oy

2

The variance 9N and incident rate ¢ of the
impulse in this section are given by 50 and 0.01,
respectively. The TDL equalizer has 11 weights. The

number of random symbol samples N is 32, the

noise value

T T T T T T
o 2000 000 5000 8000 10000

Mumhber ofsamples

Fig. 5.

Background and impulsive noise.

Fig. 6. Trace of weight values in the steady state with

impulsive noise for Ws, Wek and Wik (the other weights
are not included just for the page-limit); (a) is for channel

H.(2) and ®) is for Ha(2).

kernel size 0 is 0.5.

The convergence step-sizes are Hucc = 0.007 for

MCC1 and Hyys =0.001 for LMS algorithm. All
the parameters are selected to have the lowest steady
state MSE in this simulation.

The trace of Wk, Wek and Wrx (the other tap
weights are not included just for the page-limit) in
Fig. 6. The dotted line is the trace of the LMS
algorithm and the solid line is the one of MCCI.

Since the steady state weight vectors can be
considered to be reached the optimum state, it is
reasonable to investigate whether the steady state
weights satisfy the relation in (25) and the steady
state weight can keep the optimum values under
impulsive noise situations. The first thing we can
observe in Fig. 6 is that both algorithms have the
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same steady state weight values as explained in (25).
Secondly, the weight traces of MCC1, each weight
presents no fluctuations staying undisturbed under
the ones of LMS
algorithm for all Woi, Wk and Wk show sharp

the strong impulses while
perturbations at each impulse occurrence.
Comparison of (7) and (17) shows that the mainly
different terms between the two weight update
equations are sample averaging and magnitude
controlling processes. Since impulsive noise may
defeat the averaging operation as mentioned in
Section 2, we can explain that the dominant role in
the robustness is the

against impulsive noise

2

- e
X\ = e )X,

magnitude controlled input
and therefore the steady state weights of LMS
algorithm without the input controlling function
cannot avoid wild fluctuations in impulsive noise

environment.
V. Conclusion

In most blind signal processing applications in
impulsive noise environment the MCC algorithm
outperforms MSE-based algorithms. However, the
optimum solutions and properties related with MCC
algorithms have not been sufficiently studied. In this
paper, through analysis of the relationship with the
behavior of optimum weight of MSE-based LMS
algorithm, it has been proven that the optimum
weight of MCC is equal to the one of MSE
criterion. Furthermore, it is the magnitude controlled
of MCC

undisturbed and stable by mitigating the influence of

input that keeps optimum weight

impulsive noise. Studies on application of the
magnitude controlled input to enhanced methods are
desirable in future research.
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