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요   약

본 논문에서는 인지 라디오 네트워크를 구성하는 기본요소와, 그를 위협하는 공격 유형에 대하여 살펴본다. 특

히, SSDF (Spectrum Sensing Data Falsification) 공격에 대하여 자세히 살펴보고, 이를 극복하기 위한 해법을 제

시한다. SSDF 공격은 실현하기 쉬운 반면, 이를 탐지하고 대응하기 위하여 많은 노력이 필요하다. 본 논문에서 

제안하는 기법은 악의적인 사용자와 그들의 센싱 리포트를 구분해 내기 위하여 이상 탐지 (Anomaly Detection) 

기술을 사용 한다. 제안하는 기법의 유효성을 검증하기 위하여 시뮬레이션을 수행 하였으며, 그 결과 비정상적인 

센싱 리포트를 효과적으로 구분해 내고 활성화 된 주 사용자(Primary User)를 정확히 탐지해 내는 것을 확인 할 

수 있었다.
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ABSTRACT

In this paper, we introduce the basic components of the Cognitive Radio Networks along with possible threats. 

Specifically, we investigate the SSDF (Spectrum Sensing Data Falsification) attack which is one of the easiest 

attack to carry out. Despite its simplicity, the SSDF attack needs careful attention in order to build a secure 

system that resists to it. The proposed scheme utilizes the Anomaly Detection technique to identify malicious 

users as well as their sensing reports. The simulation results shows that the proposed scheme can effectively 

detect erroneous sensing reports and thus result in correct detection of the active primary users.
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Ⅰ. Introduction

We have seen an explosive increase in wireless 

devices during the last decade. In many countries, 

the distribution rate of WiFi-accessible smartphones 

is getting higher and higher, and this trend is 

expected to keep going on. In addition, the success 

of the handheld devices has introduced a variety of 

applications specialized for mobile devices. A few 

of the most widely-used application consume the 
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majority of the bandwidth, such as YouTube and 

Netflix. Besides, the wireless services as well as 

devices are also used for many other purposes, such 

as public safety, education, manufacturing and 

academia.

Without a doubt, the unlicensed bands (for 

example the industrial, scientific and medical radio 

bands, also known as ISM) play a key role in this 

system because these bands are free from the radio 

regulations. In other words, the unlicensed bands are 

open to anyone who wants to develop applications 

working on the bands. However, the unlicensed 

bands are definitely limited, yet the demands for use 

are tremendously increasing. Although experts from 

industry and academia are looking for ways to 

further increase the utilization of the frequency 

resources, the overall demands already reached the 

capacity limit. To satisfy the ever-increasing 

bandwidth demands, the Federal Communications 

Commission (FCC) made more frequent bands 

available.

Cognitive Radio (CR) is seen as the enabler for 

the decision, because it can utilize a part of the 

bands that are already allocated to another purpose 

without causing much interference. FCC selected the 

TV bands for this purpose because these bands are 

largely unoccupied in many parts of the U.S., since 

most households and business uses cable and 

satellite TV services. In addition, the frequency 

bands dedicated for TV channels have a much 

favorable propagation feature that allows faraway 

users to be served.

In December 2003, FCC issued a Notice of 

Proposed Rule-Making that identifies CR as the 

candidate for implementing opportunistic spectrum 

sharing. The IEEE then formed the 802.22 Working 

Group to develop a standard for wireless regional 

area networks (WRAN)
[1], which is an alternative 

broadband access scheme operating in unused 

VHF/UHF TV bands. By doing so, it is required 

that no interference is caused to the licensed 

devices, such as TV users and the FCC part 74 

microphones.

Along with the development of CRN technology, 

the security issues in CRNs have drawn more and 

more attention. In this work, we first summarize the 

basics of CRNs as well as some well-known 

security threats. Also, we propose a secure 

cooperative sensing scheme that can detect malicious 

users.

Ⅱ. Related Work

An introduction to the IEEE 802.22 standard is 

well summarized in [5], and an in-depth overview 

on the security issues on CRNs is given in [4]. The 

detailed description of the cooperative sensing and 

the security issue on the distributed, cooperative 

sensing is discussed in [9, 10, 17], respectively. The 

papers [18, 19] proposed cooperative spectrum 

sensing schemes to improve spectrum sensing 

accuracy. The authors of [18] proposed a sensing 

threshold optimization scheme to minimize the 

sensing error probability. In [19], the OR-rule based 

cooperative spectrum sensing scheme that minimizes 

the error probability was proposed.

In particular, many attempts have been made to 

resolve the threats under the cooperative spectrum 

sensing framework. The authors of [3] proposed an 

attack-tolerant distributed sensing protocol (ADSP). 

The key point of ADSP is to let a set of 

neighboring sensors cooperate with each other so 

that they can identify outliers. Assumptions in [3] 

are the SUs close to each other are clustered and the 

shadow fading among those are correlated. The 

work presented in [11] introduced a pre-filtering 

method to eliminate suspicious sensing reports. 

However, as mentioned in [3], due to the limitation 

of the proposed method, there is no guarantee that 

the method also works well when the received 

signal strength is very low. The paper [13] proposed 

a cooperative sensing scheme to counter the 

spectrum sensing data falsification attack which is 

built upon the consensus algorithms. However, the 

simulation performed is limited in that the size of 

the network is small and the attacker’s behavior is 

constant and simple.

The proposed cooperative sensing scheme in the 

present work differs from the aforementioned works 

in the sense that it does not require further 
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processing of the received signals. In addition, the 

proposed scheme can work well regardless of the 

received signal strength. The evaluation has been 

done on both a large-scale and a small-scale 

network with different behaviors of attackers while 

changing the portion of the attackers present. 

Ⅲ. Cognitive Radio Networks

3.1 Basics of Cognitive Radio Network (CRN)
Before introducing how CRNs work, some 

terminologies that are widely used in this context 

need to be clarified. In CRNs, there are two types 

of users (or devices) depending on whether they 

have rights to access the channel. Primary User 

(PU) is a type of users who have the “right” to use 

a specific range of frequency - in other words, 

channel. A PU is also called as a legitimate user 

since they actually pay the price for occupying the 

channel. Common examples are Digital TV 

broadcasting stations. On the other hand, Secondary 

Users (SU) are those who want to opportunistically 

utilize the channel that is dedicated for some PUs. 

Therefore, SUs are allowed to use the channel, i.e., 

transmitting signals on the channel, only when there 

is no active PU at the moment in order not to 

interfere with the PU. Therefore, CRNs should have 

a mechanism that guarantees PUs can access and 

use the channel whenever they want without being 

interfered by SUs.

The core technology of the CR technology 

consists of the following three components [2].

3.1.1 Spectrum sensing

The SUs are required to sense and monitor the 

radio spectrum environment within their operating 

frequency range to detect the presence of PUs

3.1.2 Dynamic spectrum management

Cognitive radio networks are required to 

dynamically select the best available bands for 

communications

3.1.3 Adaptive communications

A cognitive radio device needs to 

opportunistically configure its transmission 

parameters (e.g., carrier frequency, bandwidth, 

transmission power, etc.) in order to make the best 

use of the ever-changing available spectrum.

In this work, we focus on the spectrum sensing as 

well as some attacks on it.

3.2 Spectrum Sensing
Each SU must sense the channel to check if the 

channel is available or not. This is mainly because 

SUs should not interfere with any transmissions 

from PUs [1]. One of the most popular spectrum 

sensing technique is to use the energy detector [8]. 

One of the aspects that make the energy detector 

based technique attractive is its simplicity in terms 

of both implementation and computational cost. Let 

  be the number of samples that a SU collects by 

sensing the channel for a certain sensing period, and 

 be the sensed energy at -th sample. The 

test statistic for the energy detector,  is given by

  
 
  



 (1)

This test statistic of the energy detector is an 

estimate of average received signal strength 

(including the noise power), and can be 

approximated as a Gaussian using the Central Limit 

Theorem (CLT) [2][3] as ∼



 when 

there is no active PU, and 

∼ 
 



 when there is/are 

active PU(s), where  is the received power of a 

PU’s signal, and   is the noise power. Since we 

focus on a specific types of attacks that mainly 

happen only when there is no PU present, we will 

not further explain the equation in detail. We 

assume that the received noise at each receiver is 

i.i.d.

3.3 Cooperative Sensing and Data Fusion
Since each SU senses the channel every time 

when it has any packets to transmit, it should make 
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a decision on whether the channel is available (in 

other words, if there is no active PU) on its own 

based on its sensing report collected for a certain 

period of time. However, performing a cooperative 

sensing and decision making among a set of SUs 

has been known to yield a better performance in 

terms of the PU detection probability, because of the 

uncertainty in wireless channels
[9]. To this end, in 

many practical CR networks the sensing results of 

several nodes are taken into account together to 

make the final sensing decision in order to increase 

the reliability of the PU detection
[4].

There are, in general, three ways of making a 

cooperative decision, which is also called data 

fusion rule.

3.3.1 AND rule

If the sensing reports from ALL participating SUs 

say the channel is being used, the channel is 

regarded as being occupied by a PU.

3.3.2 OR rule

If there is at least one sensing report indicating 

that the channel is being used, the channel is 

regarded as being occupied by a PU.

3.3.3 k-out-of-n rule

If  sensing reports out of  sensing reports say 

that the channel is being used, the channel is 

regarded as being occupied by a PU.

In general, a CRN using the cooperative sensing 

has a fusion center (FC) that collects all the sensing 

reports from SUs that belong to the same network. 

After making a decision on whether the channel is 

available to use or not, the FC distributes the 

decision to the SUs. Both the collection of the 

sensing reports and the distribution of the decision 

happen on a dedicated control channel.

Ⅳ. Attacks in CRN

In this chapter, we first introduce the 

classification of certain types of attacks in CRNs, 

and then we investigate the details of the spectrum 

sensing data falsification attack which is of our 

interest in this paper.

4.1 Classification of attacks in CRN
Attacks in CRNs are usually classified based on 

the purpose of attacks - detailed classification can be 

found in [4]. Examples of the well-known attacks in 

CRNs are:

4.1.1 Receiver jamming

Malicious users introduce a noise over the 

channel so that the received signal at the receiver 

side becomes un-decodable. The jamming signal 

decreases the received SNR. If the received SNR is 

below a certain threshold, the signals cannot be 

decoded.

4.1.2 Eavesdropping

An eavesdropper might get access to the content 

of the exchanged data over the channel, and then 

utilize the information to gain some benefits.

4.1.3　Incumbent emulation (IE)

IE attack is only available on a certain type of 

networks where SUs can recognize the 

characteristics of the PU’s signal. Each PU has its 

own signature, e.g., a specific characteristic of the 

waveform, and SU can identify the presence of the 

PU by decoding the signals received. Malicious 

users learn the signature, and mimic the PU by 

transmitting the same signature when the PU is idle.

4.1.4 Spectrum sensing data falsification 

(SSDF)

In general, SSDF happens on the CRNs using the 

cooperative sensing scheme. Malicious users 

intentionally manipulate the sensing reports so as to 

deceive other SU and the fusion center. 

In this work, we focus on the SSDF attack, 

because it is one of the easiest type of attacks to 

carry out. However, it might be difficult to fight 

against SSDF, if the CRN is not carefully designed.

4.2 Spectrum Sensing Data Falsification
(SSDF)

Under the SSDF attack, malicious users 

manipulate the sensing reports. For example, when 
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Fig. 1. False alarm probability with respect to the 
individual false alarm probability.

the channel is idle, the received signal strength 

(RSS) are low because there is no signals being 

exchanged - all the signals sensed by SUs are white 

noises. An attacker, however, can report a 

manipulated RSS after magnifying it so as to 

deceive the fusion center. If the fusion center applies 

the OR rule, a single report from an attacker is 

enough to deceive the fusion center.

Some might say, then, the AND rule is more 

robust because it will still make a correct decision 

even when there are some attackers manipulating the 

sensing reports. For example, even though there are 

some sensing reports from malicious users saying 

that the channel is being used, when it is not, the 

fusion center still can determine that the channel is 

idle unless all sensing reports indicate the channel is 

busy. However, the AND rule does not always make 

the correct decision. For example, when the 

channels is being used by a PU, some 

malfunctioning SUs might fail to correctly sense the 

signals from the PU and thus report to the fusion 

center that the channel is idle. In this case, the 

fusion center determines that the channel is idle.

Under the both OR and AND rules, either 

attackers or malfunctioning SUs can confuse the 

fusion center with incorrect sensing report. In this 

regard, the k-out-of-n rule is regarded as the most 

robust solution to effectively fight against any faulty 

SUs so that the fusion center can correctly detect the 

status of the PU with high probability.

In order to augment the argument that we have 

just made, we have analyzed the performance of the 

three different fusion rules with respect to the 

probability of false alarm and detection of an 

individual SU, which can be easily applied to the 

case considering the portion of malicious or 

malfunctioning users present. Note that 

malfunctioning users are as adverse as malicious 

users because their sensing reports do not correctly 

reflect the PU’s activity. Given that   and   are 

individual false alarm and detection probability, 

respectively, at each individual SU, the false alarm 

and detection probability at the FC are derived as 

follows:

  
 



       (2)

  
 



     (3)

where   and   are the false alarm and detection 

probability, respectively, at the FC, and  is the 

number of the collected sensing reports. When  is 

equal to 1 or , the fusion rule becomes the 

OR-rule or AND-rule, respectively. On the other 

hand, if ∈ , we call that the FC follows a 

k-out-of-n rule where k is integer. In particular, 

when ⌈⌉ the fusion system is called the 

Majority rule where the channel is assumed to be 

busy when the majority of the sensing reports say 

so. The analytical results with respect to the 

influence of outliers (i.e., malicious and/or 

malfunctioning SU) are given in Fig. 1 and 2. The 

degree of the influence from outliers is represented 

by either the individual false alarm probability or 

the individual detection probability. In both figures, 

the x-axis is for the probability change of individual 

SU, whereas the y-axis is for the probability change 

at the FC.

As shown in Fig. 1, the performance of the 

OR-rule is highly degraded with the increase of the 

individual false alarm probability, while that of the 

AND rule has nothing to do with the change at least 

within the range of the individual false alarm 
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Fig. 2. Detection probability with respect to the individual 
detection probability.

probability under our consideration. In terms of the 

detection probability at the FC, on the other hand, 

the reversed results are observed. That is, as the 

individual detection probability decreases, the 

detection performance of the AND rule at the FC 

suffers severely, while the OR rule does not. In any 

cases, the performance of the Majority rule stays in 

between the rest two rules with maintaining a high 

performance. 

Besides the robustness of the performance of the 

Majority-rule, it has a lower operational complexity 

compared to the rest two rules. For example, the 

worst case complexity of both AND and OR rule 

depends on the number of the collected sensing 

reports, which can be very large. However, the 

maximum number of the sensing reports that the 

Majority-rule needs to check is⌈⌉which is 

much less than the rest two rules.

Ⅴ. Proposed Scheme for Secure 
Cooperative Sensing

We introduce a secure cooperative sensing 

protocol for CRNs. The proposed protocol helps any 

CRNs that use the energy detection scheme to 

identify faulty SUs, i.e., both attackers and 

malfunctioning SUs. Note that it is important to take 

the malfunctioning SUs into our consideration 

because they also can degrade the performance of 

cooperative sensing when present
[12]. Therefore, the 

CRNs with the proposed sensing scheme can 

effectively detect the activity of the PU, and thus 

SUs can effectively utilize the channel without 

interfering any PUs.

5.1 Network Configurations and Assumptions
We assumes that there is one DTV broadcasting 

station (PU) on the network. Multiple SUs form a 

cluster or a group so that they can perform a 

cooperative sensing. Since the coverage of DTV 

transmitter is large (the keep-out region of a DTV 

station is about 155 km [5]), there can be multiple 

non-overlapping clusters of SUs under the coverage 

of one DTV transmitter. Here, non-overlapping 

means a single SU is not allowed to join multiple 

clusters. The SUs run 802.11 MAC/PHY protocol 

which is CSMA/CA (Carrier Sensing Multiple 

Access with Collision Avoidance) with the 

distributed coordinate function.

5.2 Anomaly Detection
The core of the proposed protocol is to adopt one 

of the most widely-used techniques in both data 

mining and machine learning technique, called 

anomaly detection (AD). Anomaly detection refers 

to a problem of finding patterns in data that do not 

conform to the expected, general behavior [6]. The 

set of data that do not follow the expected pattern 

is called anomaly or outliers. Anomaly detection is 

a non-supervised learning that first finds the 

common pattern in the given set of data, and then 

detects the outliers that are outside the common 

pattern. One assumption that we make in this work 

is that the majority of the SUs are neither malicious 

nor malfunctioning. Simply speaking, more than (or 

at least) half of the SUs can correctly sense the 

channel and report their sensing result to the fusion 

center without modifying them.

Due to the CLT, the local test statistic (received 

signal strength) follows a Gaussian distribution, thus 

we will use Gaussian model to learn the dominating 

pattern in the data set (sensing reports). Specifically, 

we will fit a Gaussian distribution to the collection 

of the sensing reports and then find values that have 

a very low probability and hence can be considered 

as anomalies or outliers. The Gaussian distribution is 
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given by

  



   (4)

where and  and   are the mean and variance, 

respectively. As we mentioned earlier, the local test 

statistic of the energy detector at individual SU 

follows the Gaussian distribution by the CLT. 

Therefore, the set of the sensing reports collected by 

the FC can be viewed as a set of observed values 

of Normal random variables with the same mean 

and the same variance. In this regard, we apply the 

Gaussian distribution to fit the sensing reports.

To perform the anomaly detection, we first need 

to fit a Gaussian model to the given set of sensing 

reports. Let   be the set of sensing reports 

collected by a FC after a certain period of sensing. 

Then,   is given by

   ⋯ (5)

where  is the index of a SU. Thus   is the 

sensing report from the SU indexed by . Each 

sensing report is  ∈ . One sensing report 

might contain only one or   sensing reports 

depending on the configuration of the protocol.

To fit a Gaussian model to the data set, the mean 

and the variance need to be determined. To so do, 

we can estimate the parameters. The mean can be 

estimated by

  
 
 




 (6)

where   is the index of SU and   is the index of 

the feature (i.e., the index of the sensing results on 

a sensing report from SU- ). The variance can also 

be estimated by


  

 
 




   

 (7)

which is an unbiased estimator.

After fitting the Gaussian model to the set of the 

sensing report, we compute the probability of the 

sensing report  to get the probability as 

following.

  
 




 

 
 

















  
 






(8)

Now we can determine if  , the sensing report of 

interest, is an outlier or not by comparing  

with  , which is the threshold. That is, the sensing 

report   is anomaly if    ; otherwise,   is 

normal. Note that since the SUs are located at 

different places and sampling the received signals 

that have arrived through independent fading 

channels, we can assume that the sensing reports are 

independent as in [14][15][16]. 

To select the best threshold,  , we use the F1 

score. Specifically, we choose a threshold and get 

the corresponding F1 score. The F1 score is a 

measure of a test’s accuracy, and is defined as: 

  
⋅⋅

 (9)

It considers both the precision  and recall 

  of the test to compute the score;  is the 

number of correct positive results divided by the 

number of all positive results, and  is the 

number of correct positive results divided by the 

number of positive results that should have been 

returned.

  


   


 (10)

where   is the number of true positive,   is the 

number of false positive, and  is the number of 

false negative. If the current   yields a better F1 

score than the previous best  , we keep the current 
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Fig. 3. Frame structure.

 ; otherwise, keep the previous   as the best-so-far 

threshold. We run this process for a certain number 

of iterations to find the best threshold.

In practice, it is implausible to assume that an FC 

is aware of the ongoing PU’s activity or its presence 

at the moment when it calculates the threshold 

unless the schedule of the PU is known in advance 

- which is not the case that we assume in this work. 

However, in a retrospective manner, an FC can 

acquire the precise information about the recent 

PU’s activity. In this regard, the approach that we 

have adopted in this work is as follows. During each 

time period when the channel is predicted to be idle, 

the FC monitors the transmission activities to/from 

SUs or between SUs. In particular it overhears the 

transmission of the ACK which is an indication of 

a successful transmission. By taking both the 

prediction of the PU’s activity and the transmission 

of ACKs into consideration, an FC can classify the 

previous sensing reports into two: ones that reported 

correct sensing results, and the others that did not. 

On each of the forthcoming time frames, the FC 

uses the previously collected and classified data to 

find the best threshold. In order to keep the most 

up-to-date knowledge about the network, the 

previously calculated threshold will be replaced by a 

new one whenever the channel is predicted to be 

idle. Note that an FC cannot get any information 

from the time frame when the PU is predicted to be 

busy, because it will prevent all SUs (at least the 

benign ones) from making any transmission during 

the time frame.

5.3 Protocol Procedures
The SUs belonging to the same network are 

assumed to be synchronized. The time is divided 

into fixed-length frames, and each frame is further 

divided into three stages: sensing stage, reporting & 

decision making stage, and data transmission stage. 

In addition, we assume that there is a separate 

channel, called control channel, which is dedicated 

(i.e., free from PUs) for exchanging the sensing 

reports and decision.

5.3.1 Sensing stage (SS)

SUs switch to the DTV channel and sense it.

5.3.2 Reporting & decision making stage 

(RDMS)

SUs come back to the control channel and send 

their sensing reports to the FC. After receiving all 

the sensing reports, the FC runs the anomaly 

detection on the reports, and selects k sensing 

reports among the “normal” reports. Then runs the 

AND-rule on the selected k reports to get the final 

decision on whether the PU is present or not; which 

this is the Majority rule. The decision is then 

distributed to all SUs.

5.3.3 Data transmission stage (DTS)

If the channel is predicted to be idle, SUs switch 

to the channel and start data transmission. If not, 

SUs defer the transmissions until the end of the 

current time frame.

Ⅵ. Implementation and Evaluation

In this section, we introduce the component- wise 

layout as well as the evaluation results of the 

proposed protocol under different scenarios.

6.1 Implementation Detail
The Fig. 4 illustrates the overall flow of the 

implementation. When the simulation runs, the main 

function is first called (1). The main function 

configures parameters, and then calls the sensing 

report generator (2) with passing the parameters as 

arguments. The set of the generated sensing reports 

is returned to the main function (3), and then the 

sensing reports are tossed to the Fusion Center 

function for detecting outliers and making decision 

on the PU’s status. After detecting the outliers, the 

fusion center estimates the channel status - in other 

words, it checks if the PU is active or not (5). The 

decision made by the fusion center along with the 

related information are returned to the main function 

again.
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Fig. 4. The component-wise layout of the proposed secure cooperative sensing scheme.

6.2 Simulation Setup
We have implemented the proposed scheme in 

MATLAB [7] to evaluate its effectiveness as a 

solution against the SSDF attack. Table 1 is the list 

of the parameters we configure for the simulation.

Common Parameters

Detection Threshold -116 dBm [1]

Parameters for SUs

Number of Users 500 or 50

Number of Sensing Reports Variable

Mean of the Sensed

Signal Power
-128 dBm

Parameters for Attackers

Number of Attackers Present Variable

Attack Distribution Type
Constant, Gaussian, 

Uniform

Fusion Center

Fusion Rule Majority-rule

Table 1. Simulation parameters

6.3 Effect of the number of attackers on a 
large-scale network

In this setting, we evaluate the performance of the 

proposed scheme when there are malicious users 

present. The portion of attackers varies from 0.01 to 

0.1, and we counted how many of the attackers were 

identified as outliers by the proposed scheme. The 

number of SUs, including malicious users, on the 

networks is set to 500, which represents a 

large-scale network. The simulation results are given 

in Table 2 and Fig. 5.

As it can be seen in both Table 2 and Figure 5, 

the proposed scheme correctly detected all malicious 

users. In addition, the proposed scheme detected 

some non-attackers which were mal- functioning at 

the time of sensing. In sum, in all cases of the 

evaluations, the proposed system was able to 

correctly predict the presence of the PU on the 

channel.

No. of 

Attackers

Number of SUs Detected

by AD as Attackers

Detection 

Accuracy

5 11 100%

10 13 100%

15 20 100%

20 22 100%

25 30 100%

31 34 100%

35 37 100%

40 42 100%

46 48 100%

50 51 100%

Table 2. Performance of the proposed scheme with 
attackers.

Fig. 5. Number of detected SUs with respect to the 
portion of attackers.
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Fig. 7. Number of SUs detected over different attack 
distributions.

6.4 Comparison of attack distributions on a 
large-scale network

In this setting, we evaluate the performance when 

the attackers become more creative, and select 

different distributions from which to draw falsified 

sensing data. This may be more difficult for the 

algorithm to detect as the attacker may give 

acceptable results from time-to-time. The number of 

attackers in this setting is set to 10, while the rest 

of the configurations remain the same as before.

As it can be seen in Figure 6, the proposed 

scheme correctly detected all malicious users 

regardless of attack distributions. Again, there were 

extra outliers detected, but these were attributed to 

malfunctioning SU’s. Also, it is worth noting that in 

all cases of the evaluation, the proposed system was 

able to correctly predict the presence of the PU. The 

evaluation results are summarized in Table 3.

Fig. 6. Detected outliers over different attack distributions.

Trial Number
Constant 

Distribution

Uniform 

Distribution

Gaussian 

Distribution

1 11 11 10

2 12 10 13

3 11 10 10

4 10 10 12

5 11 11 11

6 10 10 14

7 11 12 10

8 12 11 13

9 11 10 10

10 10 10 10

Average 10.9 10.5 11.3

Table 3. Detected outliers under different distributions.

6.5 Effect of attackers on a small- scale 
network

In addition, we have performed another set of 

simulations on a relatively small-sized network 

where the number of SUs is 50. The evaluation 

results on this network will show that the 

performance of the proposed system does not 

depend on either the size of the network or the 

portion of the attackers present. The portion of the 

attackers (i.e., malicious users) varies from 0.1 to 

0.5. In other words, out of 50 SUs present on the 

network, the minimum and maximum number of 

attackers is 5 and 25, respectively. The rest of the 

system configurations remains the same as before. 

Fig. 7 shows how the outlier detection 

performance changes as the portion of attackers 

increases. When the portion of attackers is small, 

between 0.1 and 0.2, inclusively, the proposed 

system accurately detects the attackers. However, as 

the portion of attackers gets larger, the proposed 

system tends to over-detect the outliers, meaning 

that a non-trivial portion of the detected outliers 

turned out to be benign SUs. When the portion of 

attackers becomes even larger, the proposed system 

classifies the majority of the SUs into outliers, 

which does not seem to be a desired outcome. The 

reason for the over- detection, however, is 

reasonable since we are under the regime of the 

anomaly detection. As the population of the outliers 

increases, it becomes harder to make a clear 

distinction between the majority and the minority, 

and thus the range of the region representing the 
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Fig. 8. Detection probability with respect to the portion 
of attackers.

 

Fig. 9. False alarm probability with respect to the portion 
of attackers.

Fig. 10. Portion of attackers identified.

abnormal behavior tends to be larger. Therefore, 

many of the benign SUs whose sensing results are 

slightly deviated from the expected ones are marked 

as abnormal when the portion of the outliers is 

large.

Even with its undesired, yet reasonable, 

over-detecting behavior, the proposed system is able 

to maintain a very accurate detection probability, 

while keep the false alarm probability very low as 

seen in the following Fig. 8 and Fig. 9, respectively. 

What both Fig. 8 and 9 imply is that the 

performance of the proposed system is not much 

dependent upon the portion of the attackers present. 

Except one of the cases when the attacker uses the 

uniform distribution to generate the sensing report, 

all the other cases satisfy the performance 

requirement of the IEEE 802.11 [1] which are: 

probability of detection ≥, and false alarm rate 

≤.

The main reason for the high performance even 

with a high portion of attackers and also a high 

portion of the mis-classification of benign users as 

outliers is that the proposed system can still 

successfully identify malicious users. The Fig. 10 

shows the portion of attackers that are correctly 

identified by the proposed system as outliers. 

Overall, the proposed system was able to classify 

over 90% of malicious users (except the one 

instance when the uniform distribution is used) as 

attackers. Since the FC makes a decision on the 

PU’s activity after filtering those non-trusted sensing 

reports out, it was able to detect the channel status 

with a very high accuracy which is analytically 

shown by both Fig. 1 and 2 in Section IV.

Ⅶ. Conclusion

In this work, we have studied the basics of the 

cognitive radio network that is one of the most 

promising technology to increase the spectral 

efficiency by opportunistically making use of the 

under-utilized spectrum bands. Then we have 

introduced a summary of well-known attacks in a 

cognitive radio network as well as a way to 

effectively resolve the spectrum sensing data 

falsification attack. In addition, we have performed 

extensive simulations showing that the proposed 

protocol is able to detect the malicious users as well 

as malfunctioning users, and thus makes a correct 

decision on the PU’s activity.
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