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Fig. 1. De-noising of a noisy sag signal
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ABSTRACT

The noise in a power signal degrades the 

detection rate of the power quality (PQ) event 

signals. We present a new wavelet de-noising 

technique for PQ event detection that employs the 

correlation-based thresholding instead of the 

wavelet-scale-based thresholding of existing schemes. 

The simulation results show that the proposed 

scheme is more robust to Gaussian and impulsive 

noisy conditions and has further improved detection 

ratio than existing schemes.    
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Ⅰ. Introduction

A discrete wavelet transform (DWT) is 

well-known to be simple but good for de-noising. 

Recently, many studies[1-3] have been presented on 

wavelet de-noising techniques. The authors in Ref. 

[4] first suggest a de-noising technique that uses the 

spatial correlation between adjacent scales to detect 

PQ events in low signal-to-noise ratio (SNR) 

channels.

In this Letter, we introduce a new wavelet 

de-noising technique using correlation-based 

thresholding, where a modified Donoho‘s universal 

threshold that is a function of correlation is defined. 

The power signal could be corrupted by impulsive 

noise due to power switch ON/OFF as well as by 

Gaussian noise. However, in our literature search, 

existing techniques have not been evaluated over 

impulsive noise conditions yet. Hence, we first 

evaluate the presented de-noising procedure over 

both Gaussian and impulsive noisy channels and 

compare to existing schemes. We implement the 

Bernoulli Gaussian model to generate Gaussian plus 

impulsive noise samples
[5]. In that model, the noisy 

power line (or received) signal  is represented as

        (1)  

where  are the power event signal samples,  

the Gaussian noise samples with variance 
 , and 

 the impulsive noise samples with variance 
.

For the proposed de-noising algorithm, we 

decompose the input signal  using DWT, 

calculate the correlation between the adjacent detail 

wavelet coefficient (WC) scales, and then update 

those scales via thresholding and noise removal 

processes. For instance, Fig. 1 shows the de-noising 

process for a noisy sag signal input  (Fig. 1(a)),  

where a sag component of 0.9 pu (per unit) & 2 

cycles (when considering critical PQ conditions
[6]) is 

added to the original 60Hz power signal. Assume 

that the sampling rate is 15360 points/s (i.e., 256 per 

cycle), the number of all scales  = 8, and the 
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 
(%)  (%)

   

2

1 2.5 4.3455 0 0

2 0.6 2.5420 0.04 0

3 <0.08 1.2459 0.98 0.22

3

1 2.2 3.2910 0 0

2 0.4 1.7840 0 0

3 <0.05 0.7645 0.2 0.12

Existing[4] ≅1 N/A 4.12 N/A

Table 1. Statistical false alarm and miss detection rate

SNR = 35dB.

In the following, we explain a DWT-based noise 

removal algorithm using spatial correlation which 

corresponds to scale inter-multiplication operation 

between adjacent WCs (∙ denotes the scale 

inter-multiplication operator)
[4].

Step 1: Calculate the correlation coefficients with 

the adjacent WC scales: 

   
  

 

 (2)

where   and      are the 

scale (or dilution) and time-shift (or translation) 

indices, respectively, and ≥   is the size of 

adjacent scales that are correlated. For instance, for 

   and  , the wavelet correlation for a 

noisy input signal  results in 

 ∙   (3)

The correlation (see Fig. 1(d)) represents the two 

edge points due to the PQ disturbance more clearly 

than the wavelet scales ⋅  (see Fig. 

1(b), (c)), as compared to noise samples. Hence, in 

this Letter, we use the correlation coefficients 

instead the wavelet-scale coefficients that existing 

schemes[4] choose for the threshold decision (as 

explained the next step). 

Step 2: Define the threshold value   for 

the noise removal. In our scheme, we modify the 

Donoho’s universal threshold[7] with a standard 

deviation  that is a function of the correlation as 

follows:  

  




(4)

Table 1 shows the statistically-evaluated (and 

selectively chosen) false alarm rate  and miss 

detection rate  for different combinations of   

and  in (4) (resulting in a different threshold) in 

the presence of pure Gaussian noise (   in (1)) 

or impulsive noise ( ≠ in (1)), in order to 

estimate an optimal (or near-optimal) threshold. 

Assume that  < 0.5%,  < 2% are requested 

for Gaussian noise, and  < 1.5%,  < 2% are 

requested for impulsive noise. From Table 1, we 

may choose   = 3 &  = 3 (the best case) or   

= 3 &  = 2 (the second best case) to satisfy the 

given requirements. In Table 1, we can confirm that 

the correlation-based thresholding of the proposed 

scheme is better than the wavelet-scale-based 

thresholding of the existing scheme[4] (for which  

≅1%,  = 4.12% are evaluated). 

Step 3: Assign the masking value   

through a comparison of the threshold value 

  and  ; i.e., if  

is less than  , the masking value is 0; 

otherwise it is 1:

  
  
   
 ≥ 
  




Step 4: Determine the new wavelet scales 

  as follows:

 ∙

The new scales that suppress noise components 

(see Fig 1(e)) clarify the starting and ending edges 

of the disturbance.  

Step 5: Apply the inverse discrete wavelet 

transform (IDWT) to all the new scales obtained in 

Step 4 such that the recovered signal can be 

obtained.

We implement the proposed algorithm using 

Matlab and apply it to various noisy PQ events, 

including sag, swell, interruption, harmonics, and 

transient events, via a Gaussian noise channel. In 

simulation, as the mother wavelet, we choose 

Daubechies 8 (db8). The threshold is set to the case 
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  = 3 &  = 2 rather than the case   = 3 &  

= 3 considering comparable hypothetical testing 

results as well as algorithm simplicity. The detection 

rate is calculated by averaging the sample results at 

different cycles. From Table 2, we observe the 

detection rate and recovered SNR gain  (=

[recovered SNR]  [input SNR]) of the 

proposed scheme and compares it to the one of the 

existing scheme in Ref. [4] (see the bracket ( ) in 

Table 2).

Table 2 shows that the proposed scheme improves 

the detection rate, especially at low SNR (≤40dB), 

when compared to the existing one[4]. It also shows 

that  of the presented scheme is improved. 

We simulate various PQ events over impulsive 

noise channels, for which the two impulsive noise 

parameters are set  ,    [5]. The results in 

Table 3 confirm that the proposed scheme is 

superior to the conventional scheme (see ( ) in Table 

2) even at the impulsive conditions. 

SNR(dB) Detection Rate

  Sag Swell
Interru-

ption 

Harm-

onics

Trans-

ient

40 45.4
100

(98)

100

(97)

100

(100)

100

(97)

100

(100)

35 40.1
100

(96)

98

(94)

100

(100)

100

(95)

100

(100)

Table 2. PQ event detection ratio and recovered SNR 
gain over Gaussian noise

SNR(dB) Detection Rate

  Sag Swell
Interru-

ption 

Harm-

onics

Trans-

ient

40 44.5
100

(97)

100

(95)

100

(96)

100

(98)

100

(97)

35 40.4
100

(93)

98

(90)

100

(98)

100

(96)

100

(98)

Table 3. PQ event detection ratio and recovered SNR 
gain over impulsive noise

Ⅱ. Conclusion

In this Letter, we have proposed a new wavelet 

de-noising technique using correlation-based 

thresholding. The proposed scheme has improved 

the detection rate of various PQ events compared to 

existing schemes over Gaussian and impulsive noisy 

environment.
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