

다중 무인 항공기 통신을 위한 빔 추적 기법

맹승준, 박해인, 조용수

Beam Tracking Technique for Communication with Multiple Unmanned Aircraft Vehicles(UAVs)

Sung Joon Maeng[•], Haein Park^{*}, Yong-Soo Cho[°]

요 약

무인 항공기와 기지국간 통신시 커버리지 확장과 SNR 이득 확보를 위하여 기지국에서의 빔 형성 기법이 효과 적이다. 무인 항공기가 이동하는 상황에서는 빔 이득을 유지하기 위하여 기지국에서 무인 항공기를 향한 주기적인 빔 추적이 필요하다. 또한 다수의 무인 항공기가 이동하는 경우에는 기지국에서 빔 추적을 하기 위하여 무인 항공 기에서 서로 다른 프리앰블의 전송이 필요하다. 본 논문에서는 이상적인 상호 상관 특성을 갖고 있는 Hadamard 시퀸스를 기반으로 GMSK 통신시스템에서 다수의 무인 항공기를 향한 빔 추적을 위하여 프리앰블 시퀸스 설계 기법을 제안한다. Hadamard 시퀀스를 입력으로 하는 GMSK 통신시스템에서 수신신호의 특성을 분석한 이후에 다수의 무인 항공기와 통신하는 GMSK 시스템에 적합한 프리앰블 시퀀스를 제안한다.

Key Words : unmanned aerial vehicle, beam-tracking, GMSK, Hadamard sequence, multiple UAVs

ABSTRACT

Beamforming technique at the ground station is known to be effective in obtaining coverage extension or SNR gain for communication with unmanned aerial vehicle (UAV). When a UAV moves, periodic beam tracking is necessary to maintain beam gain. In order to track beams for multiple UAVs, the ground station needs to receive different preamble sequences from multiple UAVs. In this paper, a preamble sequence design technique is proposed for beam tracking in a GMSK-based communication system with multiple UAVs. Hadamard sequence is considered for the design of preamble sequence due to its ideal cross-correlation property. A preamble sequence appropriate for a GMSK communication system with multiple UAVs is proposed after analyzing the properties of received signal in a GMSK system with the input of Hadamard sequence.

I.서 론

무인 항공기(Unmanned Aerial Vehicle, Drone)란 항공기에 사람이 탑승하지 않고 원격 또는 자동으로 통제되는 항공기를 가리키며, 드론이라고도 불린다. 특히 최근에는 항공표적, 무인정찰, 감시 등 주로 군 사적인 목적으로 이용되어 오던 무인 항공기를 물류, 통신, 촬영, 센서 데이터 수집 등 다양한 민간·상업분 야에 활용하기 위한 기술 개발 및 연구가 크게 증가하 고 있다^[1]. 실제로, 유통분야에서의 무인 항공기 사용

[※] 이 논문은 2015년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(2015R1D1A1A01057628)과 미래창 조과학부 및 정보통신기술진흥센터의 대학ICT연구센터 육성지원사업의 연구결과로 수행되었음(IITP-2016-H8501-16-1007)

[•] First Author: Chung-Aug University Department of Electric & Electronic Engineering, aod0527@naver.com, 학생회원

Corresponding Author: Chung-Aug University Department of Electric & Electronic Engineering, yscho@cau.ac.kr, 종신회원
 중앙대학교

논문번호 : KICS2016-07-162, Received July 22, 2016; Revised October 7, 2016; Accepted October 13, 2016

방식을 검토하였으나, 무인 항공기의 배터리 용량의 제한 등의 이유로 전력 소모가 적은 단일 캐리어 방식 중 GMSK 방식이 CNPC 표준으로 최종적으로 고려 되고 있다⁴¹. 우리나라에서도 WiBro, LTE 등 이동통 신망을 활용한 네트워크 기반의 무인 항공기 원격제 어에 대한 연구들이 이루어지고 있지만, 현재 통신망 이 지상의 사용자를 대상으로 구축되어 있어 빌딩 높 이 이상의 항공에서는 드론의 운영이 불가능하며 전 력 소모가 크다는 단점이 있다. 따라서 본 논문에서는 CNPC 표준으로 고려되고 있는 GMSK 기반의 무인 항공기 통신 방식을 고려한다. GMSK 변조방식은 다 른 방식들과 비교했을 때, 대역 외 방사 특성이 좋고 일정한 포락선을 갖기 때문에 송신기 증폭기 선택에 자유롭고, 전력소모가 작다는 장점을 가지고 있다⁵.

WRC-12에서 할당된 L 밴드와 C 밴드의 주파수 대역의 특징을 고려하면, L 밴드는 C 대역에 비해 전 파 채널 특성이 우수한 반면, 타 서비스에 의한 점유 도가 높은 대역이기 때문에 간섭 영향이 발생 가능하 다. 반면, C 밴드는 기존 시스템과의 간섭 영향은 적 지만 채널 전파 손실이 크다는 특성을 가지고 있다. 따라서 전파채널 감쇄 영향이 큰 C 밴드의 경우 빔 형 성(Beamforming) 기술이 필수적이다. 또한 MOPS를 기준으로 무인 항공기의 셀 반경이 25nmi(46.30km) 에서 71nmi(131.49Km)인 점을 고려한다면, 기지국과 무인 항공기의 거리가 상대적으로 멀기 때문에 빔 형 성 기술이 필요하다^[14,15,16]. 일반적으로 무인 항공기는 하드웨어 복잡도와 계산량의 제한을 많이 받기 때문 에 본 논문에서 무인 항공기는 전 방향성 안테나를 가 정하였다. 반면 하드웨어 복잡도와 계산량의 제한을 적게 받는 기지국에서는 디지털 빔 형성 기술을 가정 하였다. 이 때 무인 항공기의 특성상 이동성을 갖게 되고, 기지국과 무인 항공기 간의 채널이 변화할 수 있기 때문에 최적의 채널을 형성하는 빔을 지속적으 로 찾는 빔 추적(Beam Tracking) 과정을 수행해야 한 다. 이 때, 무인 항공기가 여러 대인 상황을 고려한다 면 이들의 빔을 각각 추적할 필요가 있다.

본 논문에서는 무인 항공기 통신 시스템의 하향링 크 신호를 사용한 무인 항공기의 빔 추적 기법을 제안 한다. 여기서 하향 링크란, 무인 항공기에서 기지국 방향으로의 통신을 의미한다^[3]. 이를 위하여 다수의 무인 항공기가 존재하는 시스템에서 각 무인 항공기 의 구별에 적합한 프리앰블 시퀀스를 설계하고 이것 의 상관 특성을 분석하며, 수신된 프리앰블 시퀸스를 사용하여 기지국에서 빔을 추적할 수 있는 기법을 제 안한다. 그 후, 3D-SCM 채널을 사용한 모의실험을

이 활발히 가시화되고 있는데, 이미 아마존, 구글 등 의 미국 정보기술기업에서 무인 항공기를 택배 서비 스용으로 시험 중에 있다. 이외에도 프랑스에서 공공 분야 활용방안으로 우체국 소포배달용 무인 항공기를 개발하고 시험비행에 성공하였으며, 국내에서도 무인 항공기 제어 및 대용량 멀티미디어 데이터 전송의 가 능성을 시험한 바 있다. 국제전기통신연합(ITU-R)에 서는 세계적으로 증가하는 무인 항공기에 대비하여 장거리 무인 항공기의 안전한 운항을 위한 항공통신 기술 및 관련 주파수에 대한 연구를 수행하였는데, 연 구 결과 2020년 이후부터 민간 영역인 농작물 재배, 자원탐사, 방송통신 중계, 지도제작 등의 수요가 2030 년까지 지속적으로 늘어날 것으로 전망하였다. 또한 향후 유인항공기와 동일 공역에서 무인 항공기가 안전 하게 운용되기 위해서는 이동통신망, 위성 등을 활용 한 장거리 원격제어 통신기술 및 자동 충돌회피 기술 등과 같은 기술 연구가 필요할 것으로 전망하였다^[2]. 이와 같은 미래 무인 항공기 수요 증가에 대비하고, 무인 항공기를 유인항공기와 동일한 공역에서 장거리 원격 운용을 하기 위해서는 이를 위한 개별 주파수가 필요하다는 수요가 끊임없이 제기되어왔다. 이에 ITU-R에서는 무인항공시스템을 위한 주파수 국제 분 배를 2007년부터 WRC(World Radio Conference) 의 제로 채택하여 국제 표준화를 논의해오고 있다. 특히 WRC-12 이후 지상에서 무인 항공기를 조종할 수 있 도록 960-1,164MHz의 L 밴드와 5,030-5,091MHz 대 역의 C 밴드가 신규 항공이동업무용 주파수로 결정되 었다. 작년 2015년에 개최된 WRC-15에서는 비가시 선(Beyond LOS) 영역 해소를 위해, 무인 항공기를 위성으로 제어하기 위한 주파수 분배의 필요성이 대 두되어 10.95-30GHz 대역의 약 3GHz 대역폭이 분배 되었다. 이처럼 무인 항공기의 안정적 운용 및 시장 확대를 위한 무인 항공기 제어 전용 주파수 활용 기반 이 마련되었고, 전용 주파수 할당 및 효율적 활용, 표 준화된 제어용 통신 기술 및 시스템 구축 필요성이 증 대되고 있다. 또한 네트워크 기반의 무인 항공기에 적 합한 통신방식의 개발을 위하여 미국에서는 Control and Non-Payload Communication(CNPC) 표준 작성 이 진행되고 있다. CNPC 링크는 무인 항공기의 비행 을 제어하고 모니터링하는 것과 관련된 모든 통신체 계를 말한다. 현재 미국 NASA, RTCA 등에서 무인 항공기 시스템의 최소 운용에 요구되는 기술성능 표 주(MOPS: Minimum Operation Performance Standard) 작업을 진행하고 있다^[3]. 연구 결과에 따르 면 CDMA, OFDMA, LTE, WiMAX 등 많은 전송 통하여 성능을 분석한다.

본 논문의 구성은 다음과 같다. 2장에서는 제안된 기법의 전개에 필요한 신호를 모델링한다. 3장에서는 다중 무인 항공기의 빔 추적에 적합한 프리앰블 시퀀 스를 제안하고, 이 시퀀스의 상관특성을 분석한 후, 기지국에서 무인 항공기의 빔을 추적할 수 있는 기법 을 동기 채널에 대해서 설명한다. 4장에서는 3D-SCM 채널을 사용한 모의실험을 통하여 제안된 기법의 성 능을 분석하고, 5장에서 결론을 맺는다.

Ⅱ. GMSK 통신시스템(Preliminary)

본 장에서는 GMSK 기저대역 통신시스템 모델을 수학적으로 표현한다. GMSK 변조 방식의 장점은 일 정한 포락선(constant envelope)을 갖고 상대적으로 작은 대역폭을 차지하며 동기 검파(coherent detection)가 가능하다는 점이다. 또한 대역 외 방사 (out-of-band radiation)특성이 좋고 전력 소모가 작다 는 장점을 가지고 있다. GMSK 변조 방식의 일정한 포락선을 갖는 성질은 송신기 증폭기의 선형성에 영 향을 받지 않기 때문에 증폭기의 가격과 복잡도 측면 에서 유리하다. 또한 다중 반송파 방식에 비해 수신단 에서 복잡도가 크지 않다는 장점이 있다^[4,5]. 그림 1은 GMSK 기저대역 시스템의 블럭도를 나타낸다. 그림 1에서 b,을 같은 확률을 갖는 집합에 속하는 독립적 인 이진 데이터 시퀀스라고 할 때, 차등 프리코딩 (differential precoding)을 통과한 데이터 시퀀스 d, 은 다음과 같이 표현된다. GMSK 변조 특성상 수신단에 서 검출한 비트는 이전 비트의 영향을 받기 때문에 이 중 에러가 발생하게 된다. 이를 단일 에러로 변형하여 비트 에러율 성능을 좋게 만들기 위해 차등 프리코딩 을 사용하다^[5].

$$d_n = b_n b_{n-1} \tag{1}$$

GMSK 변조된 신호는 다음과 같이 주어진다.

$$s(t) = \sqrt{\frac{2E_b}{T}} e^{j\phi(t)}$$

$$\phi(t) = \frac{\pi}{2} \int_{-\infty}^{t} \sum_{n=1}^{N} d_n g(\tau - nT) d\tau \qquad (2)$$

$$= \frac{\pi}{2} \sum_{n=1}^{N} d_n q(t - nT)$$

식 (2)의 g(t)는 가우시안 필터를 나타내고, N은 시퀸스의 길이, T는 샘플주기이다. ^[7]의 결과로 인해, GMSK 변조된 기저대역 신호는 다음과 같이 PAM 신호들의 합으로 나타낼 수 있다.

$$s(t) = \sqrt{\frac{2E_b}{T}} \sum_{k=0}^{2^{L-1}-1} \sum_{n=1}^{N} a_{k,n} c_k(t-nT)$$
(3)

여기서, LT는 g(t)의 필터 길이를 나타낸다. GMSK 기저대역 신호의 대부분의 에너지는 펄스 $c_0(t-nT)$, $c_1(t-nT)$ 에 포함되어있기 때문에 다음 과 같이 근사할 수 있다.

$$s(t) \approx \sqrt{\frac{2E_b}{T}} \sum_{k=0}^{1} \sum_{n=1}^{N} a_{k,n} c_k (t - nT)$$

$$a_{0,n} = j d_n a_{0,n-1}, a_{1,n} = j d_n a_{0,n-2}$$
(4)

식 (4)의 $a_{0,n}, a_{1,n}$ 은 식 (1)로부터 다음과 같이 b_n 으로 표현 가능하다.

$$a_{0,n} = jd_{n}a_{0,n-1},$$

= $j^{n}b_{n}$, when $a_{0,1}, b_{1} = 1$
(5)
$$a_{1,n} = jd_{n}a_{0,n-2}$$

= $j^{n-1}b_{n}b_{n-1}b_{n-2}$

그림 1. GMSK 기저대역 시스템 모델 블럭도

Fig. 1. A block diagram of GMSK baseband transmission system

하여 이산 신호 (discrete signal) 형태로 표현하면 다 음과 같이 근사할 수 있다.

$$s_n \approx \sqrt{\frac{2E_b}{T}} \left(j^{n-1} b_{n-1} c_{0,0} + j^n b_n c_{0,1} + j^{n+1} b_{n+1} c_{0,2} + j^n b_{n-1} b_n b_{n+1} c_{1,0} \right)$$
(6)

식 (6)의 $c_{0,0}, c_{0,1}, c_{0,2}, c_{1,0}$ 은 $c_0(t-nT), c_1(t-nT)$ 펄스 중 가장 값이 큰 네 개의 계수(coefficient)를 나 타낸다. 그림 2는 $c_0(t-nT), c_1(t-nT)$ 펄스 파형을 나 타낸다. 여기서 가우시안 필터의 일반화된 대역폭 는 각각 0.3, 0.2인 경우이다. 표 1은 에 따른 $c_{0,0}, c_{0,1}, c_{0,2}, c_{1,0}$ 값을 나타낸다. 필터 길이는 5, 오버 샘플링은 4인 경우이다.

여기서, $c_{0,0}, c_{0,1}, c_{0,2}, c_{1,0}$ 가 차지하는 에너지는 전 체 s_n 의 99.9925%(*BT*: 0.3), 99.6168%(*BT*: 0.2)를 차지하기 때문에 식 (6)이 기저대역 GMSK 신호를 이 산 시간에서 잘 근사화한다고 볼 수 있다. 차동 프리 코딩의 역과정인 디프리코딩은 다음과 같이 표현된다.

표 1. *BT*에 따른 $c_{0,0}, c_{0,1}, c_{0,2}, c_{1,0}$ 값 Table 1. Values of $c_{0,0}, c_{0,1}, c_{0,2}, c_{1,0}$ according to *BT*

BT	$c_{0,0}$	$c_{0,1}$	$c_{0,2}$	$c_{1,0}$
0.3	0.3692	0.9088	0.1798	0.0730
0.2	0.4373	0.8445	0.2690	0.1393

$$\tilde{s}_{n} = j^{-n} s_{n}$$

$$\tilde{s}_{n} = \sqrt{\frac{2E_{b}}{T}} \left((-j)b_{n-1}c_{0,0} + b_{n}c_{0,1} + jb_{n+1}c_{0,2} + b_{n-1}b_{n}b_{n+1}c_{1,0} \right)$$
(7)

Ⅲ. 다중 무인 항공기 통신을 위한 빔 추적 기법

여러 무인 항공기와 기지국이 통신하는 시스템에서 빔 형성 기법을 적용하여 통신하기 위해서는 무인 항 공기의 위치 변화에 따른 빔 추적이 필수적이다. 빔 추적을 위해서 각 무인 항공기에서 전송되는 프리앰 불을 수신하고 신호의 수신 방향을 추정하여 빔 형성 가중치를 찾는 과정이 필요하다. 이 때, 여러 대의 무 인 항공기가 통신을 하게 되면 기지국이 여러 무인 항 공기로부터 동시에 프리앰블을 수신하게 되는데 이 때 무인 항공기에서 동일한 프리앰블을 사용할 경우 에는 수신된 프리앰블로부터 무인 항공기를 구분할 수 없는 현상이 발생한다. 본 장에서는 직교성으로 인 하여 이진 시퀀스 프리앰블 설계에 종종 사용되는 Hadamard 시퀀스를 사용하여 GMSK 기반의 다중 무 인항공기 통신 시스템에 적합한 프리앰블을 제안하고 이 프리앰블을 사용한 빔 추적 기법을 설명한다. 하지 만 일반적으로 GMSK 통신 시스템에서는 인접 시퀀 스간의 간섭으로 인해 이러한 이진 시퀀스의 특성이 유지되지 않는다. 본 장에서는 Hadamard 시퀀스를 입 력으로 할 때 GMSK 시스템에서도 직교성을 유지하 는 조건을 분석하고 이 결과를 기반으로 다중 무인 항 공기 추적에 적합한 프리앰블을 제안한다. 그림 3은 다중 무인 항공기 통신을 위한 빔 추적 개요도를, 그 림 4는 빔 형성 및 추적을 위한 GMSK 기저대역 시 스템의 블록도를 나타낸다.

먼저 GMSK 기저대역 시스템에서 모델에서 Hadamard 시퀀스를 사용하였을 때, 각 시퀀스간의 직 교성에 대해 분석하고 그 결과를 사용하여 다중 무인

그림 2. BT에 따른 $c_0(t-nT)$, $c_1(t-nT)$ 필스 파형 Fig. 2. Pulse shapes of $c_0(t-nT)$ and $c_1(t-nT)$ with two different values of BT

그림 3. 다중 무인 항공기 제어를 위한 빔 추적 기법 개요도 Fig. 3. Concept of beam tracking for multiple UAVs

그림 4. 빔 형성 및 빔 추적을 위한 GMSK 기저대역 시스 템의 블록도 Fig. 4. Block diagram of beam tracking in a GMSK

communication system

항공기 추적에 적합한 프리앰블을 제안한다. Hadamard 시쿼스는 Hadamard 매트릭스의 행 또는

Hadamard 시퀀스는 Hadamard 매트릭스의 행 또는 열 벡터에 해당하고 Hadamard 매트릭스는 다음과 같 은 방법으로 생성된다^[8].

$$H_{m} = H_{1} \otimes H_{m-1} = \begin{bmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{bmatrix}$$

$$H_{1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
(8)

여기서 ⊗는 Kronecker 곱을 나타낸다. Hadamard 시퀀스는 다음과 같은 성질을 가지고 있다.

1. 서로 다른 시퀀스 사이에 직교성을 가지고 있다. 식 (8)에 의해 생성된 두 개의 다른 Hadamard 시퀀스 를 $\{b_n^1\}, \{b_n^2\},$ 라고 정의할 때, 다음이 성립한다.

$$R_{b_{n}^{1},b_{n}^{2}}(\tau) = \frac{1}{N} \sum_{n=1}^{N} b_{n}^{1} (b_{n+\tau}^{2})^{*}$$

$$R_{b_{n}^{1},b_{n}^{2}}(0) = 0$$
(9)

식 (9)의 $R_{b_n^1, b_n^2}(\tau)$ 는 두 시퀀스 간의 상호 상관함 수를 나타낸다.

 Hadamard 매트릭스로부터 생성된 Hadamard 시퀀스는 길이가 2^m이고 2^m개의 서로 다른 시퀀스를 가진다. 식 (9)의 디프리코딩 결과 식의 표현을 단순 화 하기 위해 계수들을 치환하면 다음과 같다.

$$f_{0} = \sqrt{\frac{2E_{b}}{T}}(-j)c_{0,0}, f_{1} = \sqrt{\frac{2E_{b}}{T}}c_{0,1}, f_{2} = \sqrt{\frac{2E_{b}}{T}}jc_{0,2}, f_{3} = \sqrt{\frac{2E_{b}}{T}}c_{1,0}$$
$$\tilde{s}_{n} = f_{0}b_{n-1} + f_{1}b_{n} + f_{2}b_{n+1} + f_{3}b_{n-1}b_{n}b_{n+1}$$
(10)

GMSK 변조되고 난 후의 디프리코딩된 두 신호를 $\widetilde{s_n^1}, \widetilde{s_n^2}$ 라고 정의할 때, 식 (9)에 의해 두 신호의 상호 상관은 다음과 같이 표현된다. $\widetilde{s_n^1}, \widetilde{s_n^2}$ 의 동위상 (in-phase) 상호 상관은 다음과 같이 근사할 수 있다. $\{b_n^1\}, \{b_n^2\}$ 은 순환구조를 갖는다고 가정한다. 즉 $b_{-1}^1 = b_{\Lambda}^1, b_{N+1}^1 = b_1^1$ 인 구조를 갖는다.

$$\begin{split} R_{\vec{s}_{n}^{1},\vec{s}_{n}^{2}}(0) &= \frac{1}{N} \sum_{n=1}^{N} \tilde{s}_{n}^{1} (\tilde{s}_{n}^{2})^{*} \\ &= \frac{1}{N} \sum_{n=1}^{N} (f_{0}b_{n-1}^{1} + f_{1}b_{n}^{1} + f_{2}b_{n+1}^{1} + f_{3}b_{n-1}^{1}b_{n}^{1}b_{n+1}^{1}) \\ &\quad (f_{0}^{*}b_{n-1}^{2} + f_{1}b_{n}^{2} + f_{2}^{*}b_{n+1}^{2} + f_{3}b_{n-1}^{2}b_{n}^{2}b_{n+1}^{2}) \\ &\approx \left(f_{0}f_{0}^{*} + f_{1}f_{1} + f_{2}f_{2}^{*}\right)R_{b_{n}^{1},b_{n}^{2}}(0) + \left(f_{0}f_{1} + f_{1}f_{2}^{*}\right)R_{b_{n}^{1},b_{n}^{2}}(1) \\ &\quad + \left(f_{0}^{*}f_{1} + f_{1}f_{2}\right)R_{b_{n}^{1},b_{n}^{2}}(-1) + f_{0}f_{2}^{*}R_{b_{n}^{1},b_{n}^{2}}(2) \\ &\quad + f_{0}^{*}f_{2}R_{b_{n}^{1},b_{n}^{2}}(-2) + f_{1}f_{3}R_{c_{n}^{1},b_{n}^{2}}(0) + f_{1}f_{3}R_{c_{n}^{2},b_{n}^{1}}(0) \end{split}$$

여기서, $\{e_n^1\} = \{b_{n-1}^1 b_n^1 b_{n+1}^1\}, \{e_n^2\} = \{b_{n-1}^2 b_n^2 b_{n+1}^2\}$ 이다. 식 (11)의 $|f_0 f_3|, |f_2 f_3|, |f_3 f_3|$ 크기의 계수를 갖는 항들은 크기가 작기 때문에 무시하여 근사화한 다. 이 때, 식 (9)와 $f_0 f_2^* = f_0^* f_2 = -f_1 f_3, f_0 f_1^* = -f_0 f_1,$ $f_1 f_2^* = -f_1 f_2$ 가 성립한다는 결과를 이용하면 식 (11) 은 다음과 같이 표현할 수 있다.

$$\begin{split} R_{\tilde{s}_{a}^{1},\tilde{s}_{a}^{2}}(0) &= \left(f_{0}f_{1} - f_{1}f_{2}\right)\left(R_{b_{a}^{1},b_{a}^{2}}(1) - R_{b_{a}^{1},b_{a}^{2}}(-1)\right) \\ &+ f_{1}f_{3}\left(-R_{b_{a}^{1},b_{a}^{2}}(2) - R_{b_{a}^{1},b_{a}^{2}}(-2) + R_{e_{a}^{1},b_{a}^{2}}(0) + R_{e_{a}^{2},b_{a}^{1}}(0)\right) \end{split}$$
(12)

따라서, $R_{\tilde{s}^1,\tilde{s}^2}(0) = 0$ 이기 위한 조건은 다음과 같다.

$$R_{b_n^1, b_n^2}(1) = R_{b_n^1, b_n^2}(-1)$$
(13)

$$R_{b_n^1, b_n^2}(2) + R_{b_n^1, b_n^2}(-2) = R_{e_n^1, b_n^2}(0) + R_{e_n^2, b_n^1}(0) \quad (14)$$

위의 두 조건을 만족시키면 Hadamard 시퀀스의 직 교성이 유지된다. 두 번째 조건은 모든 Hadamard 시 퀀스에 대해 만족한다. 또한, 식 (13)을 만족하기 위해 서는 $R_{b_{a}^{i},b_{a}^{i}}(1) - R_{b_{a}^{i},b_{a}^{i}}(-1) = 0$ 을 만족시켜야 한다. 일부 Hadamard시퀸스만 이 조건을 만족하게 된다. 이 와 같은 방법으로 직교성을 유지하는 시퀀스를 구할 수 있으며 이를 본 논문에서는 'Proposed-I'프리앰블 로 정의한다.

다음은 위의 시퀀스를 프리앰블로 사용하여 다중 무인항공기의 빔을 추적하는 기법을 설명한다. 1)각 무인항공기는 제안된 프리앰블 시퀀스를 할당 받고 정해진 빔 추적 주기마다 동시에 프리앰블을 전송하 게 된다. 이 때, 각 무인 항공기는 서로 다른 프리앰블 을 할당 받는다. 2)기지국은 수신된 신호를 각 무인 항공기에 할당된 모든 프리앰블과 상호 상관을 한다. 3)상호 상관 값을 이용하여 각 무인 항공기에서 전송 된 신호 방향의 빔 형성기 가중치를 추정하고 이전 값 에서 업데이트 한다. 무인항공기와 기지국 사이의 채 널환경은 일반적으로 LOS(Line-of -Sight) 경로가 확 보되어 있고 다중경로에 의한 채널 지연이 작다^[9,10]. 따라서, 프리앰블 전송 구간 동안 채널이 변하지 않고 협대역 채널이며 다중 안테나의 배열에 따른 수신신 호의 위상차이를 반영한 채널모델을 사용한다. 또한 무인항공기 송신기는 전 방향 단일 안테나, 기지국은 URA 다중안테나를 사용하며 모든 수신신호는 동시 에 들어오는 동기채널을 가정한다. 본 논문에서는 위 의 채널 환경을 LOS 경로만을 고려한다. 채널 모델은 다음과 같다.

$$\mathbf{h}_{i} = \varepsilon_{i} \boldsymbol{\beta}(\theta_{i}, \phi_{i})$$
$$\boldsymbol{\beta}(\theta_{i}, \phi_{i}) = \left[e^{j\varphi_{1}} \ e^{j\varphi_{2}} \ 4 \ e^{j\varphi_{M}}\right]^{T}$$
$$(15)$$
$$e^{j\varphi_{m}} = e^{j\frac{2\pi}{\lambda}(u_{1,m}\cos\theta_{i}\sin\phi_{i}+u_{2,m}\sin\theta_{i}\sin\phi_{i})}$$

 $\varepsilon_i = i^{th}$ 무인항공기의 복소수 경로이득, $\beta(\theta_i, \phi_i)$ 는 방위각 θ_i , 위상각 ϕ_i 으로 들어오는 i^{th} 무인항공기 의 수신 안테나 배열의 steering 벡터이다. 여기서 M은 안테나 개수, λ 는 파장, $(\mu_{1,m}, \mu_{2,m})$ 는 m번째 안 테나의 원점으로부터 떨어져있는 좌표를 나타낸다. 여 러 무인항공기에서 송신된 프리앰블이 수신 안테나에 도착 후, 디프리코딩된 신호 벡터는 다음과 같이 나타 낼 수 있다^[11].

$$\mathbf{y}_n = \sum_{i=1}^{N_{\text{UAV}}} \mathbf{h}_i \tilde{s}_n^i + j^{-n} \mathbf{n}_n$$
(16)

식 (16)에서 $\widetilde{s_n^i}$ 는 i번째 무인항공기에서 송신한 디

프리코딩된 프리앰블 신호 그리고 **n**_n 은 가우시안 잡 음을 나타낸다. 프리앰블의 직교성을 이용하면 무인항 공기 수신신호의 steering 벡터를 구할 수 있다.

$$\mathbf{R}_{\mathbf{y}_{n},\tilde{\mathbf{s}}_{n}^{i}}(0) = \frac{1}{N_{p}} \sum_{n=1}^{N_{p}} \mathbf{y}_{n} (\tilde{\mathbf{s}}_{n}^{i})^{*}$$
$$= \frac{1}{N_{p}} \sum_{n=1}^{N_{p}} \left(\sum_{i=1}^{N_{tdV}} \mathbf{h}_{i} \tilde{\mathbf{s}}_{n}^{i} \right) (\tilde{\mathbf{s}}_{n}^{i})^{*} + \frac{1}{N_{p}} \sum_{n=1}^{N_{p}} j^{-n} \mathbf{n}_{n} (\tilde{\mathbf{s}}_{n}^{i})^{*}$$
$$\approx \mathbf{h}_{i} + \tilde{\mathbf{n}}_{n}$$
(17)

여기서 N_p 는 전송된 프리앰블의 길이다. 식 (17)에 서 서로 다른 프리앰블 사이에 직교성이 유지되기 때 문에 원하는 신호의 채널 벡터를 추정 할 수 있다. $\tilde{\mathbf{n}}_n$ 은 변형된 가우시안 잡음 항을 나타낸다. 무인항공기 의 빔 형성기 가중치 벡터(beamformer weight Vector) \mathbf{W}_i 는 채널 계수를 이용하여 다음과 같이 구 할 수 있다.

$$\hat{\mathbf{w}}_{i} = \left\{ \frac{\boldsymbol{\varepsilon}_{i}^{*}}{|\boldsymbol{\varepsilon}_{i}|} \mathbf{R}_{\mathbf{y}_{n}, \tilde{\mathbf{s}}_{n}^{i}}(0) \right\}^{H}$$
(18)

채널 계수는 수신단에서 알고있는 프리앰블을 이용 하여 LS(least square) 방법을 통해 추정할 수 있다. 그림 4와 같이 병렬구조의 상관기를 사용하여 동시에 여러 무인항공기의 빔을 추적할 수 있다.

Ⅳ. 모의실험

본 장에서는 제안된 하향 링크 신호를 이용한 기지 국의 빔 추적 기법에 대해 모의실험을 통하여 성능을 분석한다. 모의실험에 사용한 시스템의 파라미터는 다 음과 같다. 중심 주파수는 C 밴드의 중심 주파수인

5060 MHz, 변조 방식은 GMSK 변조 방식, BT는 0.2를 사용한다. 송신단(무인항공기)에서는 전 방향성 단일 안테나를 사용하였으며, 이때 프리코딩 방식은 차등 프리코딩 방식을 사용하였다. 수신단(기지국)에 서 사용하는 안테나는 4×4 URA (Uniform Rectangular Antenna)이며, 수신단 신호검출방식은 Laurent Decomposition을 이용한 간략화된 Viterbi를 사용하였다^[12,13]. 채널 모델은 3D-SCM을 사용하였다. 3D-SCM채널 모델은 기지국과 무인항공기의 위치정 보를 바탕으로 LOS 경로의 각 안테나에 수신되는 방 위각(azimuth angle), 고도각(elevation angle)을 반영 하였다. Non LOS 경로는 한 개의 클러스터(cluster) 로 구분되어 있고, 이는 20개의 레이(ray)로 표현된다. 클러스터의 Power Angular Spread(PAS)는 각 분산 이 2rms도인 라플라시안이다. 또한 라이시안 채널의 K-factor는 27dB이고 이는 C-밴드 무인항공기 채널 측정 결과로부터 얻은 값이다^[9].

첫 번째 모의실험은 3장에서 제안된 프리앰블 (Proposed-I)과 Hadamard 시퀀스 전체를 사용하는 기존의 시퀀스의 상호 상관 특성을 비교해 보았다. GMSK 변조 후의 신호를 사용하였으며 Hadamard 시 퀀스는 H₆에서 생성된 64개의 시퀀스를 중 (12,27,53) 세 가지를 입력으로 선택하였고 나머지 입 력은 변한다. 여기서, 64개의 시퀀스에서 선택된 (12,27,53) 시퀸스는 제안된 33개의 시퀀스에서(7, 15, 82)에 속한다. 그림 5(a)는 나머지 입력이 제안된 시 퀀스 1에서 33까지 변할 때 상호 상관 값을 나타낸다. 그림 5(a)를 통해 제안된 시퀀스만을 선택했을 경우 상호 상관 값이 0이 됨을 확인 할 수 있다. 따라서 제 안된 시퀀스는 GMSK 시스템에서 직교성을 유지한 다. 그림 5(b)는 H₆에서 생성된 64개의 기존의 시퀀 스를 입력으로 했을 때의 경우를 보여준다. 기존 시퀀 스를 사용하였을 때는 GMSK 시스템에서 직교성이 깨지는 것을 확인 할 수 있다.

두 번째 모의실험은 다중의 프리앰블을 동시에 전 송하였을 때 상호 상관 특성을 확인함과 동시에 그에 따른 빔 패턴을 확인한다. 이를 확인하기 위해, 위치 가 다른 세 대의 무인 항공기가 동시에 한 대의 기지 국으로 신호를 보내는 상황에서 각각의 무인 항공기 는 서로 다른 프리앰블을 전송함을 가정한다. 수신된 신호와 모든 프리앰블 후보에 대해 상호 상관을 하여 신호를 분리하고 상호 상관 값을 이용하여 각 무인항 공기에 대한 빔 형성기 가중치 벡터를 추정한다. 그림 6(a)는 모의실험에서 수신된 신호와 모든 프리앰블 후

그림 5. GMSK 시스템에서의 상호 상관 값. (a) Proposed-1 시퀸스 (b) 기존의 Hadamard 시퀀스 Fig. 5. Correlation value at the output of the GMSK system. (a) Proposed-1 sequence. (b) Original Hadamard sequence

보 간의 상호 상관값 예시를 보여준다. 프리앰블의 상 호 상관 특성에 의해, 전송된 3개의 프리앰블에 대해 서만 피크가 나타나고 다른 프리앰블에 대해서는 0에 가까운 값이 나타나는 것을 알 수 있다. 그림 6(b)는 이 때 추정한 빔 형성기 가중치 벡터를 사용한 수신 빔 패턴을 보여주는데, 세 수신 신호에 대한 빔 패턴 을 겹친 결과이다. 그 결과 각각 빔 패턴의 최대 빔 이 득이 16이 나오게 된다. 이는 수신된 세 신호가 잘 분 리됨을 확인 가능한데, 안테나 개수가 16개일 때 이론 적인 최대 빔 이득이 16이기 때문이다.

세 번째 모의실험은 동기 채널의 경우, 빔 추적 환 경에 따른 BER 성능을 측정하였다. 빔 추적 성능을

그림 6. (a) 수신된 신호와 제안된 프리앰블 후보 간의 상 호 상관 값 예시(b) 수신 빔 패턴 예시 Fig. 6. (a) Example of cross-correalation between received signal and proposed preambles (b) Example of receiver beam pattern

확인하기 위하여 단일 안테나 환경에서 빔 형성 기법 을 사용하지 않았을 때의 BER 곡선(그림 7(a))과 4×4URA 수신 안테나 환경에서 빔 추적을 통한 빔 형성 기법을 사용하였을 때의 BER 곡선(그림 7(b))을 비교 분석한다. 무인항공기가 한 대와 두 대인 상황에 대해서 각각 모의실험 하였고 두 수신 신호의 세기는 같으며, 무인항공기의 위치는 고도각 30°, 각각의 방 위각은 72°, 288°로 설정하였다. 그림 7(a)는 단일 안 테나 잡음채널 환경에서의 BER 곡선을 나타낸다. GMSK 방식의 BER 곡선은 BPSK 곡선과 비교했을 때 가우시안 필터로 인한 인접 심볼 간섭의 영향만큼 성능이 열화된다. 그림 7(b)는 4×4URA 수신 안테 나에서 빔 형성 기법을 사용한 환경에서 BER 곡선이 다. 원이 있는 점선에 해당되는 이상적인(Ideal) 빔 형 성기를 사용한 경우는 그림 7(a)와 비교했을 때 이론 적인 빔 이득(12 dB)을 얻는 것을 알 수 있다. 단일 무인항공기(1 UAV)가 프리앰블을 전송하는 상황의 빔 추적 성능(네모가 있는 실선)과 비교했을 때, 두 대 의 무인항공기(2 UAV)가 서로 다른 제안된 프리앰블 (Proposed-I) 프리앰블을 전송하는 상황의 빔 추적

그림 7. 동기 채널에서 빔 추적에 따른 BER 성능(a) Omni-Antenna(b) Beamforming antenna(4×4) Fig. 7. BER performance of proposed beamforming technique in synchronous channel. (a) Omni-directional antenna. (b) Beamforming antenna(4×4)

성능(x가 있는 일점 쇄선)이 조금 더 열화되는 것을 확인할 수 있는데, 이는 간섭 신호가 형성된 빔의 사 이드 로브(side lobe)를 통해 수신되어 영향을 주기 때 문이다. 기존의 프리앰블 전송시 직교성이 깨지는 시 퀸스(Conventional)를 선택하게 된다면, BER 성능(삼 각형이 있는 실선)이 제안된 프리앰블을 사용했을 때 보다 크게 열화되는 것을 알 수 있다. 이는 빔 형성이 간섭신호 방향으로 일부 형성되어 간섭신호의 영향을 많이 받기 때문이다. 또한 두 대의 무인 항공기가 같 은 프리앰블(Same Preamble)을 사용하는 경우(다이 아몬드가 있는 점선)에는 빔 추적 성능이 크게 열화되 는 것을 확인할 수 있다. 이는 서로 다른 무인항공기 에서 전송되는 프리앰블을 구분하지 못하여 빔이 양 쪽으로 형성되고, 이로 인해 간섭신호가 모두 수신되 기 때문이다.

V.결 론

본 논문에서는 다수의 무인항공기가 이동하는 경우 에 빔 형성기를 사용하는 기지국에서 다수의 빔을 추 적할 수 있는 방법을 제안하였다. 다수의 무인항공기 가 존재하는 환경에서 수신 프리앰블을 이용하여 빔 을 추적하기 위해서는 서로 다른 무인항공기로부터 수신되는 프리앰블을 구별할 필요가 있기 때문에, GMSK 기반의 무인항공기 통신시스템에 적합한 Hadamard 시퀀스 기반 프리앰블을 제안하였다. 3D-SCM 채널모델을 사용한 시뮬레이션 통하여 다수 의 무인 항공기와 통신하는 GMSK 시스템에서 제안 된 프리앰블 시퀀스의 빔 추적 성능을 검증하였으며, 동기 채널에 제안된 프리앰블을 사용할 경우 성능이 우수함을 확인하였다.

References

- H. W. Kim and K. S. Kang, "Technical and standardization trends on control and non-payload communications for unmanned aircraft systems," *Electron. and Telecommun. Trends*, vol. 30, no. 3, pp. 74-83, Jun. 2015.
- [2] ITU, Characteristics of unmanned aircraft systems and spectrum requirements to support their safe operation in non-segregated airspace, ITU-R M.2171, Dec. 2009.
- [3] RTCA, Minimum operational performance standards (MOPS) for unmanned aircraft

systems (UAS) command and control, Draft version 1.0, 2015.

- [4] NASA/CR, NASA Unmanned Aircraft(UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies, 2014-216673.
- [5] K. Murota and K. Hirade, "GMSK modulation for digital mobile telephony," *IEEE Trans. Commun.*, vol. COM-29, pp. 1044-1050, 1981.
- [6] N. Al-Dhahir and G. Saulnier, "A highperformance reduced-complexity GMSK demodulator," *IEEE Trans. Commun.*, vol. 46, pp. 1409-1412, 1998.
- [7] P. A. Laurent, "Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses," *IEEE Trans. Commun.*, vol. COM-34, pp. 150-160, 1986.
- [8] H. Zepernick and A. Finger, *Pseudo Random Signal Processing: Theory and Application*, John Wiley & Sons, 2005.
- [9] D. W. Matolak, "Unmanned aircraft systems: Air-ground channel characterization for future applications," *IEEE Veh. Technol. Mag.*, vol. 10, pp. 79-85, 2015.
- [10] D. W. Matolak and R. Sun, "Air-ground channel characterization for unmanned aircraft systems: the near-urban environment," *MILCOM 2015*, pp. 1656-1660, Oct. 2015.
- [11] L. C. Godara, Smart Antennas, CRC Press, 2004.
- [12] G. K. Kaleh, "Simple coherent receivers for partial response continuous phase modulation," *IEEE J. Sel. Areas on Commun.*, vol. 7, pp. 1427-1436, 1989.
- [13] G. Colavolpe and R. Raheli, "Reducedcomplexity detection and phase synchronization of CPM signals," *IEEE Trans. Commun.*, vol. 45, pp. 1070-1079, 1997.
- [14] K. S. Kim, T. S. Lim, J. H. Choi, and Y. S. Cho, "A Tx-Rx beam tracking technique for cellular communication systems with a mmWave link," *J. KICS*, vol. 39A, no. 12, pp. 1-11, 2014.
- [15] M. J. Kim, J. H. Choi, and Y. S. Cho,

"Convergence analysis on distributed time and frequency synchronization algorithm for OFDMA-based wireless mesh networks using bio-inspired technique," *J. KICS*, vol. 39A, no. 8, pp. 488-490, 2014.

[16] M. J. Kim, Y. J. Lee, and Y. S. Cho, "A distributed time synchronization technique for OFDMA-based wireless mesh communication systems using bio-inspired algorithm," *J. KICS*, vol. 38A, no. 12, pp. 1069-1078, 2013.

맹 승 준 (Sung Joon Maeng)

2015년 2월 : 중앙대학교 전자 전기공학부 졸업(학사) 2015년 2월~현재 : 중앙대학교 전자전기공학부 석사과정 <관심분야> MIMO-OFDM, 5G 이동통신, 빔포밍

박해인 (Haein Park)

2015년 7월 : 중앙대학교 전자 전기공학부 졸업(학사) 2015년 7월~현재 : 중앙대학교 전자전기공학부 석사과정 <관심분야> MIMO-OFDM, 5G 이동통신, 빔포밍

조용수 (Yong-Soo Cho)

1984년 2월: 중앙대학교 전자 전기공학부 졸업(학사)
1987년 2월: 연세대학교 전자 공학과 졸업(석사)
1991년 2월: The University of Texas of Austin 공학박사
1992년 3월~현재: 중앙대학교 전자전기 공학부 교수

2003년 8월~2007년 12월:TTA 휴대인터넷(와이브 로) 프로젝트그룹(PG302) 무선접속 실무반 의장 2016년 1월~12월:한국통신학회 회장

<관심분야> MIMO-OFDM 모뎀 설계, 5G 이동통신