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ABSTRACT

The maximum zero error probability (MZEP) algorithm outperforms MSE (mean squared error)-based
algorithms in impulsive noise environment. The magnitude controlled input (MCI) which is inherent in that
algorithm is known to plays the role in keeping the algorithm undisturbed from impulsive noise. In this paper, a
new approach to normalize the step size of the MZEP with average power of the MCI is proposed. In the
simulation under impulsive noise with the impulse incident rate of 0.03, the performance enhancement in steady

state MSE of the proposed algorithm, compared to the MZEP, is shown to be by about 2 dB.

I. Introduction algorithm, the normalized least mean square

algorithm (NLMS) where its step size is proportional

In supervised signal processing such as in most
equalization applications, the least mean square
(LMS) algorithm is widely used for its simplicity

and effectiveness'"

. One of the problems of the
LMS algorithm is the step size parameter fixed at
every iteration time. The fixed step size requires
information of the statistics of the input signal such
as signal input power and amplitude that affect its
LMS

performancelz]. As an extension of the

to the inverse of the dot product of the input vector

with itself has been proven to have more enhanced
1341

performance™".

As an information theory based criterion, unlike
the MSE criterion, the zero-error probability (ZEP)
and its related algorithms outperform MSE-based
algorithms and yield superior and stable convergence

i,

in impulsive noise environmen The nonlinear

version of MZEP has been proposed for underwater
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communication channels and known to compensate
successfully for ISI without error propagationlﬁ].
Also for practical implementation a recursive
gradient estimation method has been proposed for
the MZEP algorithm to reduce its computational
complexity significantly”. In the recent study[sl, it
has been revealed that the ZEP criterion has
equivalent optimum solution of MSE criterion and
the magnitude controlled input (MCI) of MZEP
algorithm plays the role of keeping the optimum
solution undisturbed from impulsive noise.

Though the role of MCI in the MZEP algorithm
under impulsive noise has been introduced, any
application of the MCI to performance enhancement
has not been carried out. In this paper, based on the
NLMS approach, a normalized step size for the
MZERP is investigated where the normalized step size
is proportional to the inverse of the dot product of
the MCI with itself. And then, through simulation
under impulsive noise with different rates of impulse
occurrence, it will be shown that the normalized step
size employing the information of MCI can enhance
the performance of MZEP significantly.

II. MSE Criterion and LMS algorithm

In communication systems, a symbol point d; at

symbol time k is transmitted through the wireless
channel #(2)=2 2" and noise ™ is added to
the channel output. Then the received signal ¥« is

composed of the channel output and noise " as

X = Zhidk—i + (1)

Assuming that the equalizer has the TDL (tapped
delay line) structure with weights, Wi =[Wo > Wi
w ] and input buffer X, =[x, % X1
the equalizer output Y; attime £k becomes
v, =W/X,. Then the error €, and the MSE

criterion Pysz is defined in [3] as.

ek:dk_yk:dk_WkTXk 2

Puse = E[ekz] 3

The expectation or mean operation E[-] in(3) can
mitigate the influence of the Gaussian noise. But in
case of impulsive noise, a single large impulse can
dominate the mean operation so that the averaging
operation may not be effective to defeat the
impulsive noise.

As a practical algorithm developed based on the
MSE criterion, the LMS (least mean square) is to

use the instant error power € instead of Ele;]™.

With the instant gradient 0¢; /oW and a step size M,
the LMS algorithm can be expressed as

6613 —2e od, =)
=ze
oW oW @)

= 2¢,X, =-2(d, - X, W)X,

oe?
W, =W, _/U‘ik
oW 5)
=W, +2u-¢X,

By letting the gradient de; /OW in (3) be zero,

the optimum weight Wy can be obtained.

d.X,

W = ~hk
LMS XZX/(

(6)

I. Normalized LMS algorithm

One of the problems of the LMS algorithm is the
step size parameter 4 fixed at every iteration time.
The fixed step size requires information of the
statistics of the input signal such as signal input
power and amplitude that affect its performancem.
The step size Hyus in the normalized least mean
square algorithm (NLMS) as an extension of the
LMS algorithm is defined in [3] as proportional to
the inverse of the dot product of the input vector

with itself.
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The denominator X; X, =||X,|" is also equivalent

to the sum of the expected energies of the input

L-1

2
samples Z Y-n  With an additional parameter 4"

> m=0
for freedom of adaptation, the NLMS algorithm can

be expressed as

Wi =W+ sy -6, X, (€]
u s
Hyvs =5 2 = I
he Hz Li x;, ©)
m=0

The NLMS algorithm shows far greater stability
with unknown signals and considered to be effective
in real time adaptive systemsm.

Since the averaging operation is not effective to
defeat the impulsive noise, the LMS and NLMS
algorithms employing instant error power e; without
averaging operation may cause surefire instability in

impulsive noise environment.

IV. ZEP Criterion and Magnitude
Controlled Input

The criterion of zero-error probability Fyp that
has been developed for impulsive noise environment
is defined as in (10) by the kernel density estimation
method™”,

Ppp fE(e_O)_% Zk:,/] (0-¢) (10)

2

—e
P(F)

The Gaussian kernel G, (e) is g\}ﬂ &
with a kernel size and error samples
s s €rens €y} (sample size N ) as described
in the work"".

For maximization of ZEP (MZEP) that forces
error samples to be concentrated on zero, the

steepest descent method with the step-size #uzzp that

controls the system stability is employed. The
resulting MZEP algorithm as in [5] is

Wear = Wit fzer —- Ze X! (11)

=k-N+1

where the magnitude-controlled input (MCI), X}f is
defined in [8] as

X! =G,(¢) X, (12)

Since the Gaussian kernel G,(e,) is a function of
an exponential decay with the error power e, large
error power due largely to strong impulses involved
within the input X, is mitigated through G, (e;).
This indicates that the MCIL, X; through the
magnitude control process G, (€)X, in (12) can
prevent system instability that might be induced by
large input values contaminated with impulsive noise'”.
On the other hand, the gradient in (11),

) k
0P, _ 1 Ze.-Xi4
6W &N . /A~ 7' can be written as

OPyp _
oW (e} Nz k-N+1

13)

Letting the gradient (13) be zero, we obtain the
optimum weight W, zer for MZEP algorithm as

Wi =5 — (14)

In the work®™, it has been proven that the
statistical average of the optimum weights of MZEP
and LMS are equal in the steady state that most
error samples are assumed to be at around zero.
That is,

E[Wﬁ(:IZEP] = E[WZMS] (15)

While MZEP based on ZEP criterion and LMS
based on MSE have the same optimum solution, the

3
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behavior of steady state weight under impulsive
noise situations have been shown to be significantly
different in the work®’. The trace of the steady state
weight for MZEP algorithm has stayed in the value
of Wy thanks to MCI X', whereas that of LMS
algorithm being afflicted directly by large impulses
has fluctuated wildly.

V. Power Estimation of MCI for
Normalized Step Size

Similar to the NLMS where the step size is
normalized by the averaged power of the current
input samples as presented in Section 3, we propose
the data-dependent step size which is normalized by
the average of the expected energies of the current
MCI X‘,"ﬁl for greater stability with unknown
signals and robustness against impulsive noise as

well.

MMZEP 1 a A
W, =W +——% e - X;
DY ZXGNZ (16)
N[:/(wwli

where x'=G_(e)x, is from (12).

Noticing the fact that averaging operation may
not be effective to defeat the impulsive noise as
explained in Section 3, we may observe that the
denominator of (16) may be sensitive to impulsive

noise. To avoid this kind of situation, we propose to

track the averaged energy E(k) recursively as

an

2
E(k)= B+ E(k=1)+ (1= B)-|x/|
The equations (17) can be expressed as a

2
z-transformed system A(z) with its input ‘x;“
andoutput E(k).

z

z=p

A(z)=(1-p) (18)

The time constant of the single-pole low-pass
filler A(z) is controlled by the parameter /S

(0< B <1). Then the normalized MZEP (NMZEP)

algorithm with a constant Ayuzer becomes

IUNMZEP : A
W =W, + =0 E e - X!
k+1 k E(‘ ) i:k#v“: i (19)

VI. Results and Discussion

In this section, it will be investigated how the
NMZEP equipped with MCI behave under different
impulsive noise situations. The impulsive noise 7
in (1) is composed of the background Gaussian
noise with its variance Oy and impulses. The
amplitude distribution of impulses is a Gaussian
with variance 07y and the impulses are generated

according to a Poisson process with its incident rate
9]
&

2
_nk

Folng) =% expr

OonN27 200y,
(20)
2
U

+ 5 5 expl: 5 3
\/271(0'GN +opy) 2(ogy +0ouy)

We take the same simulation environment as in
[8] except that impulse noise models have different
incident rates, €=0.01 depicted as a sample in Fig.
1 and €=0.03 in Fig. 4, respectively. The random

symbol point d, from the set
{d, =-3,d,=-1,d,=1,d, =3} is transmitted
through the multipath channel

H(z)=0.304+0.903z"'+0.304z>"".  The TDL
equalizer has 11 weights (L =11). The sample size
N, the kernel size ¢ for the MZEP and NMZEP is
20 and 0.7, respectively. The step-size Azep,
Hamzer and  Hpys are 0.004, 0.008 and 0.0002,
respectively. The forgetting factor £ and the initial
‘x(f ‘2 for NMZEP are set to be 09 and 1.0,
respectively.

We observe in Fig. 2 that due to the large
impulse noise spikes shown in Fig. 1, the LMS fails
to converge below -20 dB even for the small

step-size. On the other hand, the MZEP type
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Fig. 1. Impulsive noise sample with & =0.01.
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Fig. 2. MSE learning curves for the impulsive noise with
€=0.01 (red: LMS, green: MZEP, blue: NMZEP).

algorithms converge well. Compared to the MZEP,
the curve of the proposed NMZEP algorithm reaches
lower steady state MSE than the MZEP showing
about 1 dB enhancement. In the Fig. 3, this
performance difference can be noticed in the aspect
of error probability density.

On the other hand, in the situation of the
impulsive noise with £=0.03 as in Fig. 4, the
performance difference between NMZEP and MZEP
is clearer as in Fig. 5 and 6. The difference of
steady state MSE for the MZEP and NMZEP
algorithms is about 2 dB. In the comparison of error
probability density, the performance difference can
be observed more clearly.

From the results of MSE learning curves and

error distribution, we find that the normalized step

—
oy

AN
o =

o
T

E: 100 120
eror value (x-100 /250)

Fig. 3. Error distribution for the impulsive noise with &
=0.01 (red: LMS, green: MZEP, blue: NMZEP).
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Fig. 4. Impulsive noise with &= 0.03.
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Fig. 5. MSE learning curves for the impulsive noise with
£=0.03 (red: LMS, green: MZEP, blue: NMZEP).

size with the information of MCI ng’ can serve
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Fig. 6. Error distribution for the impulsive noise with &
=0.03 (red: LMS, green: MZEP, blue: NMZEP).

MZEP based algorithms to produce performance
enhancement significantly. And the MCI contributes
more to performance enhancement in the NMZEP

algorithm as the impulsive noise is severer.

VI. Conclusion

The MZEP algorithm outperforms MSE-based
algorithms in impulsive noise environment and the
magnitude controlled input, MCI inherent in that
algorithm, plays the role in keeping the algorithm
undisturbed from impulsive noise. In this paper, a
normalization approach to the step size of the MZEP
based on the MCI has been proposed. From the
simulation results, it can be concluded that the
normalized step size employing the information of
MCI can enhance the performance of MZEP
significantly.
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