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요   약

충격성 잡음 환경에서 최대 영확률 (MZEP) 알고리듬은 최소자승오차 (MSE) 기반의 알고리듬 보다 우수한 성

능을 지닌다.  그리고  알고리듬 자체에 내재한 크기 조절 입력 (MCI)가 MZEP 알고리듬을 충격성 잡음으로부터 

알고리듬을 안정되게 유지하는 역할을 하는 것으로 알려져 있다. 이 논문에서는 MCI 입력의 평균전력으로 MZEP 

알고리듬의 스텝 사이즈를 정규화하는 방식을 제안하였다. 충격파 발생률이 0.03인 충격성 잡음하의 시뮬레이션에

서 정상상태 MSE 성능 비교에서 기존 MZEP에 비해 제안한 방식이 약 2dB 정도 향상된 특성을 보인다.
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ABSTRACT

The maximum zero error probability (MZEP) algorithm outperforms MSE (mean squared error)-based 

algorithms in impulsive noise environment. The magnitude controlled input (MCI) which is inherent in that 

algorithm is known to plays the role in keeping the algorithm undisturbed from impulsive noise. In this paper, a 

new approach to normalize the step size of the MZEP with average power of the MCI is proposed. In the 

simulation under impulsive noise with the impulse incident rate of 0.03, the performance enhancement in steady 

state MSE of the proposed algorithm, compared to the MZEP, is shown to be by about 2 dB. 
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Ⅰ. Introduction

In supervised signal processing such as in most 

equalization applications, the least mean square 

(LMS) algorithm is widely used for its simplicity 

and effectiveness
[1]. One of the problems of the 

LMS algorithm is the step size parameter fixed at 

every iteration time. The fixed step size requires 

information of the statistics of the input signal such 

as signal input power and amplitude that affect its 

performance
[2]. As an extension of the LMS 

algorithm, the normalized least mean square 

algorithm (NLMS) where its step size is proportional 

to the inverse of the dot product of the input vector 

with itself has been proven to have more enhanced 

performance
[3,4]. 

As an information theory based criterion, unlike 

the MSE criterion, the zero-error probability (ZEP) 

and its related algorithms outperform MSE-based 

algorithms and yield superior and stable convergence 

in impulsive noise environment
[5]. The nonlinear 

version of MZEP has been proposed for underwater 
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communication channels and known to compensate 

successfully for ISI without error propagation[6]. 

Also for practical implementation a recursive 

gradient estimation method has been proposed for 

the MZEP algorithm to reduce its computational 

complexity significantly
[7]. In the recent study[8], it 

has been revealed that the ZEP criterion has 

equivalent optimum solution of MSE criterion and 

the magnitude controlled input (MCI) of MZEP 

algorithm plays the role of keeping the optimum 

solution undisturbed from impulsive noise. 

Though the role of MCI in the MZEP algorithm 

under impulsive noise has been introduced, any 

application of the MCI to performance enhancement 

has not been carried out. In this paper, based on the 

NLMS approach, a normalized step size for the 

MZEP is investigated where the normalized step size 

is proportional to the inverse of the dot product of 

the MCI with itself. And then, through simulation 

under impulsive noise with different rates of impulse 

occurrence, it will be shown that the normalized step 

size employing the information of MCI can enhance 

the performance of MZEP significantly. 

Ⅱ. MSE Criterion and LMS algorithm 

In communication systems, a symbol point kd  at 

symbol time k is transmitted through the wireless 

channel 
i

i zhzH −∑=)(  and noise kn  is added to 

the channel output. Then the received signal kx  is 

composed of the channel output and noise kn  as 

 

kikik ndhx += −∑ (1)    

 

Assuming that the equalizer has the TDL (tapped 

delay line) structure with weights, ,..,,[ ,1,0 kkk ww=W
T

kLw ],1−  and input buffer 
T

Lkkkk xxx ],...,,[ 11 +−−=X , 

the equalizer output ky  attime k  becomes 

k
T
kky XW= . Then the error ke  and the MSE 

criterion MSEP  is defined in [3] as.

 

k
T
kkkkk dyde XW−=−= (2)

][ 2
kMSE eEP = (3)

 

The expectation or mean operation ][⋅E  in(3) can 

mitigate the influence of the Gaussian noise. But in 

case of impulsive noise, a single large impulse can 

dominate the mean operation so that the averaging 

operation may not be effective to defeat the 

impulsive noise. 

As a practical algorithm developed based on the 

MSE criterion, the LMS (least mean square) is to 

use the instant error power 
2
ke  instead of ][ 2

keE [3]. 

With the instant gradient W∂∂ 2
ke  and a step sizeμ , 

the LMS algorithm can be expressed as    

 

WW ∂
−∂

=
∂
∂ )(2

2
kk

k
k ydee

    k
T
kkkkk de XWXX )(22 −−=−=

(4)

W
WW

∂
∂
⋅−=+

2

1
k

kk
eμ

     kkk e XW ⋅+= μ2
(5)

 

By letting the gradient W∂∂ 2
ke  in (3) be zero, 

the optimum weight 
o
LMSW can be obtained. 

k
T
k

kko
LMS

d
XX
XW = (6)

Ⅲ. Normalized LMS algorithm

One of the problems of the LMS algorithm is the 

step size parameter μ  fixed at every iteration time. 

The fixed step size requires information of the 

statistics of the input signal such as signal input 

power and amplitude that affect its performance
[2]. 

The step size NLMSμ  in the normalized least mean 

square algorithm (NLMS) as an extension of the 

LMS algorithm is defined in [3] as proportional to 

the inverse of the dot product of the input vector 

with itself. 
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2

11

kk
T
k

NLMS
XXX

==μ (7)

 

The denominator 
2

kk
T
k XXX =  is also equivalent 

to the sum of the expected energies of the input 

samples, ∑
−

=
−

1

0

2
L

m
mkx . With an additional parameter 

∧μ  

for freedom of adaptation, the NLMS algorithm can 

be expressed as 

 

kkNLMSkk e XWW ⋅+=+ μ1 (8)

 

∑
−

=
−

∧∧

== 1

0

2
2 L

m
mk

k
NLMS

x

μμμ
X (9)

 

The NLMS algorithm shows far greater stability 

with unknown signals and considered to be effective 

in real time adaptive systems
[4]. 

Since the averaging operation is not effective to 

defeat the impulsive noise, the LMS and NLMS 

algorithms employing instant error power 
2
ke  without 

averaging operation may cause surefire instability in 

impulsive noise environment.

Ⅳ. ZEP Criterion and Magnitude 
Controlled Input  

The criterion of zero-error probability ZEPP that 

has been developed for impulsive noise environment 

is defined as in (10) by the kernel density estimation 

method
[8,9].  

 

∑
+−=

−===
k

Nki
iEZEP eG

N
efP

1
)0(1)0( σ (10)

The Gaussian kernel )(eGσ  is 
)

2
exp(

2
1

2

2

σπσ
e−

with a kernel size and error samples 

},...,,...,,{ 11 +−− Nkikk eeee  (sample size N ) as described 

in the work[5]. 

For maximization of ZEP (MZEP) that forces 

error samples to be concentrated on zero, the 

steepest descent method with the step-size MZEPμ  that 

controls the system stability is employed. The 

resulting MZEP algorithm as in [5] is   

 

∑
+−=

+ ⋅+=
k

Nki

A
iiMZEPkk e

N 1
21
1 XWW

σ
μ (11)

 

where the magnitude-controlled input (MCI), 
A
kX  is 

defined in [8] as

 

kk
A
k eG XX ⋅= )(σ (12) 

Since the Gaussian kernel )( keGσ  is a function of 

an exponential decay with the error power 
2
ke , large 

error power due largely to strong impulses involved 

within the input kX  is mitigated through )( keGσ . 

This indicates that the MCI, 
A
kX  through the 

magnitude control process kkeG X⋅)(σ  in (12) can 

prevent system instability that might be induced by 

large input values contaminated with impulsive noise[8].

On the other hand, the gradient in (11), 

∑
+−=

⋅=
∂
∂ k

Nki

A
ii

ZEP e
N

P
1

2

1 X
W σ  can be written as 

 

∑
+−=

⋅−=
∂
∂ k
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A
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T
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ZEP d
N

P
1

2 )(1 XWX
W σ

(13)

 

Letting the gradient (13) be zero, we obtain the 

optimum weight 
o
MZEPW  for MZEP algorithm as

 

∑

∑

+−=

+−== k

Nki

T
i

A
i

k

Nki

A
ik
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MZEP

d

1

1
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In the work[8], it has been proven that  the 

statistical average of the optimum weights of MZEP 

and LMS are equal in the steady state that most 

error samples are assumed to be at around zero. 

That is,  

 

][ o
MZEPE W = ][ o

LMSE W (15) 

 

While MZEP based on ZEP criterion and LMS 

based on MSE have the same optimum solution, the 
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behavior of steady state weight under impulsive 

noise situations have been shown to be significantly 

different in the work[8]. The trace of the steady state 

weight for MZEP algorithm has stayed in the value 

of 
o
ZEPW  thanks to MCI 

A
kX , whereas that of LMS 

algorithm being afflicted directly by large impulses 

has fluctuated wildly. 

Ⅴ. Power Estimation of MCI for 
Normalized Step Size  

Similar to the NLMS where the step size is 

normalized by the averaged power of the current 

input samples as presented in Section 3, we propose 

the data-dependent step size which is normalized by 

the average of the expected energies of the current 

MCI 
MCI
km,X  for greater stability with unknown 

signals and robustness against impulsive noise as 

well. 

 

∑
∑ +−=

+−=

+ ⋅+=
k

Nki

A
iik

Nki
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MZEP
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NxN
1

2

1

21
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(16)

 

where ii
A
i xeGx )(σ=  is from (12).  

Noticing the fact that averaging operation may 

not be effective to defeat the impulsive noise as 

explained in Section 3, we may observe that the 

denominator of (16) may be sensitive to impulsive 

noise. To avoid this kind of situation, we propose to 

track the averaged energy )(kE  recursively as 

2
)1()1()( A

kxkEkE ⋅−+−⋅= ββ (17)

 

The equations (17) can be expressed as a 

z-transformed system )(zA  with its input 
2A

kx

andoutput )(kE .  

β
β

−
−=

z
zzA )1()( (18) 

 

The time constant of the single-pole low-pass 

filter )(zA  is controlled by the parameter β  

)10( << β . Then the normalized MZEP (NMZEP) 

algorithm with a constant NMZEPμ  becomes 

 

∑
+−=

+ ⋅+=
k

Nki

A
ii

NMZEP
kk e

kE 1
1 )(

XWW μ
(19)

Ⅵ. Results and Discussion

In this section, it will be investigated how the 

NMZEP equipped with MCI behave under different 

impulsive noise situations. The impulsive noise kn  

in (1) is composed of the background Gaussian 

noise with its variance 
2
GNσ  and impulses. The 

amplitude distribution of impulses is a Gaussian 

with variance 
2
INσ  and the impulses are generated 

according to a Poisson process with its incident rate

ε [9].

 

]
2

exp[
2

1)( 2

2

GN

k

GN
kN

n
nf

σπσ
ε −−

=

]
)(2

exp[
)(2 22

2

22
INGN

k

INGN

n
σσσσπ

ε
+

−

+
+

(20)

 

We take the same simulation environment as in 

[8] except that impulse noise models have different 

incident rates, ε =0.01 depicted as a sample in Fig. 

1 and ε =0.03 in Fig. 4, respectively. The random 

symbol point kd  from the set 

{ }3,1,1,3 4321 ==−=−= dddd  is transmitted 

through the multipath channel 
21 304.0903.0304.0)( −− ++= zzzH [10]. The TDL 

equalizer has 11 weights ( 11=L ). The sample size 

N, the kernel size σ for the MZEP and NMZEP is 

20 and 0.7, respectively. The step-size MZEPμ , 

NMZEPμ  and LMSμ  are 0.004, 0.008 and 0.0002, 

respectively. The forgetting factor β and the initial
2

0
Ax  for NMZEP are set to be 0.9 and 1.0, 

respectively. 

We observe in Fig. 2 that due to the large 

impulse noise spikes shown in Fig. 1, the LMS fails 

to converge below -20 dB even for the small 

step-size. On the other hand, the MZEP type 
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Fig. 3. Error distribution for the impulsive noise with ε
=0.01 (red: LMS, green: MZEP, blue: NMZEP).

Fig. 4. Impulsive noise with ε = 0.03.

Fig. 5. MSE learning curves for the impulsive noise with 
ε =0.03 (red: LMS, green: MZEP, blue: NMZEP).

Fig. 1. Impulsive noise sample with ε =0.01. 

Fig. 2. MSE learning curves for the impulsive noise with 
ε =0.01 (red: LMS, green: MZEP, blue: NMZEP).

algorithms converge well. Compared to the MZEP, 

the curve of the proposed NMZEP algorithm reaches 

lower steady state MSE than the MZEP showing 

about 1 dB enhancement. In the Fig. 3, this 

performance difference can be noticed in the aspect 

of error probability density. 

On the other hand, in the situation of the 

impulsive noise with ε =0.03 as in Fig. 4, the 

performance difference between NMZEP and MZEP 

is clearer as in Fig. 5 and 6. The difference of 

steady state MSE for the MZEP and NMZEP 

algorithms is about 2 dB. In the comparison of error 

probability density, the performance difference can 

be observed more clearly. 

From the results of MSE learning curves and 

error distribution, we find that the normalized step size with the information of MCI 
MCI
km,X can serve 
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Fig. 6. Error distribution for the impulsive noise with ε
=0.03 (red: LMS, green: MZEP, blue: NMZEP).

MZEP based algorithms to produce performance 

enhancement significantly. And the MCI contributes 

more to performance enhancement in the NMZEP 

algorithm as the impulsive noise is severer.      

Ⅶ. Conclusion

The MZEP algorithm outperforms MSE-based 

algorithms in impulsive noise environment and the 

magnitude controlled input, MCI inherent in that 

algorithm, plays the role in keeping the algorithm 

undisturbed from impulsive noise. In this paper, a 

normalization approach to the step size of the MZEP 

based on the MCI has been proposed. From the 

simulation results, it can be concluded that the 

normalized step size employing the information of 

MCI can enhance the performance of MZEP 

significantly.        
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