
양방향 경로 설정 루 방지를 통한 개선된

AntHocNet

라 만 샴스 우르 , 남 재 충*, 아즈말 칸**, 조 유 제°

Improved AntHocNet with Bidirectional Path Setup and Loop

Avoidance

Shams ur Rahman , Jae-Choong Nam*, Ajmal Khan**, You-Ze Cho°

요 약

MANET (Mobile Ad hoc Network)에서 라우 은 네트워크 토폴로지의 동 인 변화에 큰 향을 받는다.

AntHocNet은 집단 개미가 최 경로를 통해 먹이를 찾아가는 원리를 모방한 집단생태 특성 기반 MANET 라우

 로토콜이다. 하지만, AntHocNet은 다른 MANET 라우 로토콜과 달리 단방향 경로만을 지원하여 양방향

통신이 요구되는 다양한 응용 환경에서 사용하기에 많은 제약이 따른다. 한, AntHocNet은 다 경로를 통한 확

률 라우 으로 인해 루핑 문제 (looping problems)를 빈번히 발생시킨다. 본 논문에서는 AntHocNet에서 양방향

경로 수립을 한 향상된 경로 수립 방안을 제안한다. 한, 다양한 시나리오별 루핑 문제의 발생 원인을 분석하

고 루 방지를 한 해결 방안을 제시한다. NS-2 시뮬 이션을 통해 기존 AntHocNet과의 성능을 비교하 으며,

제안 방안이 라우 오버헤드, 종단간 지연 시간, 패킷 달률 측면에서 기존 방안에 비해 우수한 성능을 보임을

확인하 다.

Key Words : MANETs, routing, bio-inspired, ant colony optimization, AntHocNet, bidirectional path

ABSTRACT

Routing in mobile ad hoc networks (MANETs) is highly challenging because of the dynamic nature of

network topology. AntHocNet is a bio-inspired routing protocol for MANETs that mimics the foraging behavior

of ants. However, unlike many other MANET routing protocols, the paths constructed in AntHocNet are

unidirectional, which requires a separate path setup if a route in the reverse direction is also required. Because

most communication sessions are bidirectional, this unidirectional path setup approach is often inefficient.

Moreover, AntHocNet suffers from looping problems because of its property of multiple paths and stochastic data

routing. In this paper, we propose a modified path setup procedure that constructs bidirectional paths. We also

propose solutions to some of the looping problems in AntHocNet. Simulation results show that performance is

significantly enhanced in terms of overhead, end-to-end delay, and delivery ratio when loops are prevented.

Performance is further improved, in terms of overhead, when bidirectional paths setup is employed.

논문 17-42-01-10 The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01
https://doi.org/10.7840/kics.2017.42.1.64

64

※ 본 연구는 2016년도 한국연구재단[NRF-2015R1D1A1A01059623]의 지원을 받아 수행되었습니다.

First Author : Kyungpook National University, shamsuet@gmail.com, 학생회원

° Corresponding Author : Kyungpook National University, yzcho@ee.knu.ac.kr, 종신회원

* Kyungpook National University, jch-nam@ee.knu.ac.kr, 학생회원

** COMSATS Institute of Information Technology Attock Campus, Pakistan, drajmal@ciit-attock.edu.pk

논문번호：KICS2016-09-265, Received September 20, 2016; Revised December 20, 2016; Accepted December 20, 2016

www.dbpia.co.kr

논문 / 양방향 경로 설정 루 방지를 통한 개선된 AntHocNet

65

Ⅰ. Introduction

Mobile ad hoc networks (MANETs) have

attracted increasing research attention over the last

few decades. A MANET is a network of mobile

nodes that communicate over a wireless medium.

Because of the network's ad hoc nature, there is no

infrastructure, and therefore, the mobile nodes

themselves have to perform the routing function.

The infrastructure-less nature of MANETs brings

with it many advantages, such as allowing rapid

deployment. However, the dynamic nature of the

topology of MANETs makes routing a challenging

issue. Mobile nodes that are within transmission

range of each other can communicate directly.

However for communication among nodes that are

not in the transmission range of each other,

intermediate nodes have to route the packets towards

the destination.

Several routing protocols for MANETs have been

proposed using traditional approaches
[1]. Because

nature offers solutions to many complex problems,

researchers have also looked into it for finding

solutions to the routing problem and have proposed

some bio-inspired routing protocols
[2,3]. The laws

that govern biological systems and their dynamics

are based on very few simple and generic rules.

However, without any centralized control, these

systems exhibit patterns that are highly collaborative

and effective in terms of synchronization, task

allocation, etc. MANETs are inherently

infrastructure-less and dynamic and have to operate

autonomously. Bio-inspired routing approaches can

provide efficient and scalable solution strategies to

such types of networks
[4,5].

 Many routing protocols inspired by various

biological species have been proposed
[6-10]. Ant

Colony Optimization (ACO)[11] is a problem-solving

framework inspired by the foraging behavior of

biological ants. An ant colony can to discover the

shortest path to a food source. Ants indirectly share

information with each other. They achieve this by

laying a chemical substance, called pheromone,

along the path they travel. This type of information

sharing is called stigmergy. Other ants are attracted

to the pheromone depending on its intensity. A

shorter path is traversed more quickly and more

frequently by ants, and therefore, receives more

pheromone. This attracts even more ants to it. This

way, suboptimal paths are eventually abandoned and

all ants converge on the shortest path. ACO is

extensively used in routing and load balancing
[12].

Several routing protocols are based on the ACO

framework, such as ARA[8], PERA[13], MACO[14],

AntNet
[15], and AntHocNet[9,10].

AntHocNet is a hybrid multipath algorithm for

MANETs, designed along the principles of ACO

routing
[10]. It consists of both reactive and proactive

components. It does not maintain routes to all

possible destinations at all times (like the original

ACO algorithms for wired networks), but only sets

up paths when they required at the start of a data

session. This is done in the reactive route setup

phase, where ant agents called reactive forward ants

(FANTs) are launched by the source in order to find

multiple paths to the destination, and backward ants

(BANTs) return to the source to set up the paths.

According to the common practice in ACO

algorithms, the paths are set up in the form of

pheromone tables that indicate their respective

quality. After the route setup, data packets are

routed stochastically over the different paths

following these pheromone tables. While the data

session is running, the paths are monitored,

maintained, and improved proactively using different

agents, called 'proactive forward ants'. The

algorithm reacts to link failures with either a local

route repair or by warning preceding nodes on the

paths.

AntHocNet overcomes some of the limitations

found in other bio-inspired routing protocols. Unlike

Termite
[6], AntHocNet does not suffer from

suboptimal paths problems. Unlike ARA[4] and

Termite, AntHocNet's pheromone laying mechanism

helps push data traffic away from congested paths

thus, balancing load across the network.

AntHocNet's path maintenance mechanism has the

characteristic of maintaining existing paths and

exploring new and better paths. Moreover, unlike

BeeAdhoc
[11], AntHocNet does not depend on the

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01

66

availability of agents, such as foragers, to carry data

packets.

However, AntHocNet suffers from two key

shortcomings. First, unlike many other well-known

MANET routing protocols, such as AODV
[16] and

DSR[17], AntHocNet's path setup procedure

constructs unidirectional paths, which can be highly

inefficient in the majority of cases. In this paper, we

propose a bidirectional path setup scheme for

AntHocNet. Second, the use of multiple paths and

stochastic data routing in AntHocNet causes looping

of data packets. which can severely degrade

performance. But the looping problems in

AntHocNet have not been mentioned in any other

literatures. We elaborate the phenomenon of data

packet looping with some scenarios and present

some solutions to prevent such loops from

occurring. Simulation results show that loop

prevention significantly reduces overhead and

end-to-end delay, and improves packet delivery

ratio. Moreover, use of the proposed bidirectional

path setup scheme further reduces overhead and

end-to-end delay.

The rest of the paper is organized as follows.

Section 2 presents an overview of AntHocNet.

Section 3 describes the proposed scheme of

bidirectional path construction. In Section 4, some

loop formation scenarios in AntHocNet are

identified and their solutions are presented. Section

5 discusses simulation results. Finally, Section 6

provides some conclusions.

Ⅱ. Overview of AntHocNet

In this section, we describe the procedures for

path setup, path maintenance, and link failure

handling in AntHocNet. We also describe the data

routing algorithm of AntHocNet.

2.1 Reactive path setup
The source node broadcasts a reactive FANT.

Every intermediate node that receives a reactive

FANT will broadcast the ant further if it has no path

to the given destination; otherwise, it unicasts the

ant by choosing the next hop stochastically

according to the following equation:

 ∑
∈

 ≥ (1)

where
 is the amount of pheromone on the link

from node ni to nr for destination d, whereas
 is

the set of neighbors of ni over which a path to the

destination d is known. Broadcasting results in quick

ant proliferation. It is possible for a node to receive

multiple replicas of the same ant. In such case, the

length of the already travelled path and the time

already taken by the replica (of ant) are compared

to those of the previous replicas (of ant) and is only

forwarded if they meet certain conditions. This helps

remove ants that have come over bad paths while

allowing for a mesh of sufficiently disjoint multiple

paths. The reactive FANT maintains a list P of its

visited nodes [n1, n2, …, nk]. When the ant reaches

the destination, it is converted to into a BANT.

BANT takes the same path as its corresponding

FANT, but in the reverse direction. At each node,

BANT computes , the estimate of time required

by a data packet to reach the destination from the

current node. This estimate is computed

incrementally by using the following relationship:

 (2)

where

 is a local estimate of time required by

a data packet to travel from node ni to ni+1.

is computed using the equation.

 (3)

where
 is the number of packets in the queue

at the Media Access Control (MAC) layer of node

ni and

 is the running average of the time a

packet waited at the MAC layer of node ni before

being successfully transmitted.

 incorporates

www.dbpia.co.kr

논문 / 양방향 경로 설정 루 방지를 통한 개선된 AntHocNet

67

channel access activities that include channel

congestion. BANT sets up a path to the destination

at every intermediate node. This is done by creating

or updating an entry
 in the routing table. This

entry indicates the goodness of going over the next

hop nr towards the destination d from the current

node ni.
 is computed using the following two

equations:

(4)

 ∈ (5)

where h is the number of hops from the current

node to the destination and is a constant that

represents the time to take one hop in unloaded

conditions.

2.2 Stochastic data routing
Multiple paths are constructed from the source to

the destination during the path setup phase. Data are

forwarded along these paths according to their

goodness indicated as by the pheromone values in

the routing table. At each node, the next hop is

chosen stochastically using the following equation:

 ∑
∈

 ≥ (6)

This stochastic data routing results in automatic

load balancing with better and less congested paths

having a higher probability of being chosen.

2.3 Proactive path maintenance
Another type of ants, called proactive FANTs, is

launched regularly while the data session is running.

For the most part, a proactive FANT is unicast by

the intermediate nodes similarly to a reactive FANT.

However, there is a small probability (0.1) that an

intermediate node might decide to broadcast it.

Although unicast results in sampling and refreshing

existing paths, a broadcast at some intermediate

node helps explore new paths. However, a proactive

FANT cannot be broadcasted more than twice. This

helps control flooding the network with proactive

FANTs. Nodes regularly broadcast 'hello' messages

that help each node know its neighbors. Because of

this, when a FANT arrives at a neighbor node of the

destination, it is forwarded directly to the

destination. If a node misses two consecutive 'hello'

messages from a neighbor, the node assumes it has

lost that neighbor and removes its entry from the

routing table.

2.4 Link failures
If a node does not receive a 'hello' message or

any other signal from a neighbor for a certain

amount of time (thello × allowed-hello-loss), the

neighbor is assumed to have been lost. In addition,

if the transmission of a unicast message to a

neighbor fails, the neighbor is assumed to have been

lost. The loss of neighbor means link failure, and

thus the node notifies this to all its neighbors. If a

link fails during an on-going data session, the node

looks for alternate routes. If no alternate route is

available, the node attempts to repair the route

locally by broadcasting a route repair FANT towards

the involved destination. The route repair ant is

managed similarly to the reactive FANT by the

intermediate nodes. However, the route repair FANT

cannot be broadcasted more than twice. Meanwhile,

packets destined for the involved destination are

buffered. If the local link repair is successful, the

buffered packets are forwarded along the repaired

path; otherwise, the packets are dropped and a link

failure notification is broadcasted.

Ⅲ. Bidirectional Path Setup

As described in Section 2.1, the path setup

procedure in AntHocNet constructs only forward

paths - paths that lead towards the destination node

- and are therefore unidirectional paths. A BANT

constructs a forward path from each intermediate

node and source node as it visits them. However,

communication sessions are usually bidirectional.

This is particularly true when Transmission Control

Protocol (TCP) or Stream Control Transmission

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01

68

s=n1 d=nk

n2
n3 nk-1

(a) FANT traveling from s to d

s=n1 d=nk

n2
n3 nk-1

(b) path constructed by FANT

s=n1 d=nk

n2
n3 nk-1

(c) BANT traveling from d to s

s=n1 d=nk

n2
n3 nk-1

(d) path constructed by BANT

Fig. 1. Path setup procedure.

Protocol (SCTP)[18] is involved because received

packets have to be acknowledged. In such cases, a

bidirectional path is highly desirable because it can

result in significant overhead and delay reduction for

setting up backward paths.

The original AntHocNet utilizes BANTs to

construct forward paths. Our proposed scheme

constructs forward paths similarly to AntHocNet.

However, to construct backward paths, our proposed

scheme utilizes FANTs. This requires the FANT to

carry two additional fields, hop count and time

estimate, but no additional control packets are used.

Source node s sends a FANT toward destination d,

as shown in Fig. 1(a). After this FANT reaches

destination node d, each of the intermediate nodes

[n2, n3, …, nk-1] and destination d will have a path

constructed to node s (FANT's source node) as

shown in Fig. 1(b); that is, they will have an entry

for s in their pheromone table . FANT, similarly

to BANT, incrementally computes an estimate of

the time required by a data packet to travel over the

intermediate nodes toward the source node. This

estimate is used to update the routing tables. is

the sum of local estimates

 (note that this is

the reverse of

 , which is used in AntHocNet

for path construction from source to destination).

 is the time estimate for going from node ni+1

to node ni. The equation.

 (7)

computes the time estimate for a packet to reach the

source node (n1) from the destination (nk). For any

intermediate node, for example nr, the time estimate,

for a packet to reach the source node from that

intermediate node is

 (8)

Now at each intermediate node i, the time

estimate and hop count (which the FANT carries

with itself) are used to calculate
 .

(9)

where h is the number of hops from the current

node to the source and is a constant that

represents the time to take one hop in unloaded

conditions.
 can then be used to update the value

of
 .

 ∈ (10)

where
 is the pheromone value in the routing

table of node i for reaching s via the next hop node

n. Once the FANT reaches the destination, it is

www.dbpia.co.kr

논문 / 양방향 경로 설정 루 방지를 통한 개선된 AntHocNet

69

s d
n2 n3 n4

m2 m3 m4

(a)

s d
n2 n3 n4

m2 m3 m4

(b)

Fig. 2. Scenario 1 (a) reactive FANTS traveling (b) paths from s to d, which can result in looping of data packets between
n3 and m3.

converted into a BANT and sent toward the source.

Now, as described in Section 2.1, BANT moves

from the destination toward the source via

intermediate nodes, and a path is constructed from

each intermediate node and source node to the

destination. That is, as shown in Fig. 1(c), if BANT

moves along nodes [nk-1, nk-2, nk-3,…, n2] and reaches

source node s=n1 from destination d=nk, each

intermediate node [nk-1, nk-2, nk-3,…, n2] and source

node s will have a path towards the destination d,

as shown in Fig. 1(d); that is, they will have an

entry for d in their pheromone table .

Ⅳ. Looping Issues and Solutions in
AntHocNet

The use of multiple paths and stochastic data

routing in AntHocNet helps in load balancing.

However, these can also cause the looping of data

packets. It is worth mentioning here that in this

case, data packets do not always continue looping

indefinitely. That is, a data packet might loop any

number of times, and then exit of the loop.

However, the possibility of indefinite looping also

exists. These looping problems increase the

end-to-end packet delay.

We describe the scenarios that can lead to the

looping of data packets and explain how looping

occurs therein. We also propose solutions to prevent

such loops.

4.1 Scenario 1
Consider a network where a source node s

launches a FANT (reactive or route repair FANT)

toward a destination d. The ant is broadcast by the

source node and it can also be broadcast by other

nodes. Therefore, several replicas of the same ant, or

in other words, several FANTs of the same

generation, travel along various paths.

4.1.1 Single-hop loop

Fig. 2(a) shows the paths taken by two reactive

FANTs (black and red ants) of the same generation.

The red ant (solid line) traversed nodes [m2, m3, n3,

n4], whereas the black ant (dashed line) traversed

nodes [m2, m3, n3, n4] on their way from source s to

destination d.

Pred: [m2, m3, n3, n4, d]

Pblack: [n2, n3, m3, m4, d]

Pred and Pblack denote the paths taken by the red

and black ants, respectively. Nodes n3 and m3 are

visited by both ants, but in the reverse order. The

paths thus constructed are shown in Fig. 2(b).

Now we explain how looping of data packets can

be caused in this situation. Source node s has two

paths to destination d. Because, data packets are

routed stochastically using (6), in AntHocNet, s can

choose either n2 or m2 as the next hop. Assume that

it chooses n2 and forwards a data packet to it. n2

only knows n3 as the next hop to d, and thus it

forwards the data packet to n3. Now n3 has two

paths to d: through n4 and m3. Assume that n3

chooses m3 as the next hop and forwards the data

packet to it. m3 also has two paths to d: through m4

and n3. Assume that m3 chooses n3 as the next hop

and thus the data packet arrives for the second time

at n3. This way, the data packet has looped once

between n3 and m3. The same process can occur any

number of times and thus the data packet can loop

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01

70

s d
n2 n3 n4

m 2 m 3 m 4

Fig. 3. Single-hop loop prevention of scenario 1.

any number of times between these two nodes. The

data packet might eventually exit the loop if either

n3 chooses to forward it to n4 or m3 chooses to

forward it to m4. We call this a 'single-hop loop'

because the data packet loops back and forth over

one hop.

4.1.2 Multi-hop loop

Multi-hop loops of this type are also possible.

Consider slightly different paths by introducing

nodes a and b in the paths of the red and black ants,

respectively.

Pred: [m2, m3, a, n3, n4, d]

Pblack: [n2, n3, b, m3, m4, d]

Again, nodes n3 and m3 are visited by both ants

and in reverse order, but here n3 and m3 are not

neighbors, or more importantly, the visits to these

two nodes by the two ants are not consecutive. In

this case, data packets can continue looping through

nodes [m3, a, n3, b]. Here, also, the packets can loop

any number of times before exiting the loop.

Because this involves more than one hop, we call

this a 'multi-hop loop'.

4.1.3 Solution

Occurrence of the single-hop loop of scenario 1

can be eliminated as follows. Before forwarding a

BANT to the next hop, each node checks its routing

table to determine whether it has a path to the

involved destination (BANT's source node) that

passes through the BANT's next hop. If such a path

exists, the node does not forward the BANT further.

As a result, data packets do not encounter the

single-hop looping of scenario 1.

For further elaboration, refer to Fig. 2. Suppose

that the BANT that corresponds to the red ant has

already returned and a path along Pred has already

been setup. Now when the BANT that corresponds

to the black ant is received by m3, it finds that the

next hop of the BANT is n3. Because m3 already has

a path to d through n3, m3 will drop the BANT

without forwarding it further. Fig. 3 shows the

resultant paths.

In this case, unlike Fig. 2(b), single-hop looping

of data packets is not possible. Source node s has a

path to d through m2 only. Node m3 has two paths

to d, but none can cause looping. As a result, data

packets can reach the destination without

encountering looping.

4.2 Scenario 2
This scenario involves some existing paths and

new paths constructed by a proactive (or a route

repair) ant.

4.2.1 Single-hop loop

Consider again a network where a source node s

has already established some paths to a destination

d. Assume, as shown in Fig. 4(a), that three such

paths are:

P1: [n2, n3, n4, n5, d]

P2: [m2, m3, n4, n5, d]

P3: [m2, m3, m4, d]

Note that P1 and P2 merge at node n4. Now,

assume that a proactive FANT is travelling along P1

and is broadcasted at n4. Because m3 is a neighbor

of n4, it picks up the broadcast and forwards this

FANT to the next hop m4 (along P3). The proactive

FANT travels along the rest of P3 and reaches

destination d. Now, if the corresponding BANT

successfully arrives back at source s, we have the

updated paths shown in Fig. 4(b).

In this scenario, looping of data packets between

nodes m3 and n4 can occur. For example, if m3

receives a packet destined for d, it finds that there

are two paths to d: through m4 and n4. Because of

stochastic data routing, m3 might choose n4 as the

next hop. Now n4 also has two paths to d: through

n5 and m3. Again, because of stochastic data routing,

www.dbpia.co.kr

논문 / 양방향 경로 설정 루 방지를 통한 개선된 AntHocNet

71

s
d

n2
n3 n4

m2
m3 m4

n5

(a)

s
d

n2
n3 n4

m2
m3 m4

n5

(b)

Fig. 4. Scenario 2 (a) proactive FANT traveling (b) updated paths from s to d, which can result in looping of data packets
between m3 and n4.

n4 might choose m3 as the next hop. This way, the

data packet traverses the loop once. Now the same

process can continue unless either m3 chooses to

forward the data packet to m4, or n4 chooses to

forward it to n5.

4.2.2 Multi-hop loop

Consider the slightly different paths shown below:

P1: [n2, n3, n4, n5, n6, n7, d]

P2: [m2, m3, u, n4, n5, n6, n7, d]

P3: [m2, m3, m4, m5, m6, m7, d]

Again, suppose that while data packets are in

transit along P1, the link between n4 and n5 breaks.

Node n4 attempts to locally repair the path, and

therefore it broadcasts a route repair FANT.

Suppose that a node v receives this broadcast and

rebroadcasts it further. This rebroadcast is received

by m3. Now, from this point forward, this FANT

can travel along the rest of P3 to the destination. As

a result, P1 has changed and appears as follows:

P1:[n2,n3,n4,v,m3,m4,m5,m6,m7,d]

Now with P3 and the changed P1, it is possible

for data packets to loop through nodes [m3, u, n4, v].

4.2.3 Solution

Occurrence of the single-hop loops of scenario 2

can be prevented. Before forwarding a route-repair

(or proactive) FANT, each node checks whether it

(the node) has a path to the involved destination that

passes through the previous hop of the FANT; if so,

the node drops the ant. As a result, data packets do

not encounter the single-hop looping of scenario 2.

To elaborate this further, refer to Fig. 4(a). When

node m3 receives the proactive FANT broadcasted

by n4, it (m3) finds that it already has path to d

through n4. Because n4 is the previous hop of the

FANT, m3 drops the FANT. As result, the paths

remain as before. Therefore, unlike Fig. 4(b), no

data packet looping is possible between m3 and n4.

4.3 General solution for single-hop loop
prevention

The solutions, presented in Sections 4.1.3 and

4.2.3 prevent single-hop looping by preventing

multiple paths that can result in such looping. Each

of these solutions only prevents single-hop loops of

the particular scenario for which it was proposed. In

this section, we propose a solution which can

prevent single-hop loops of any type. Moreover, this

solution does not impose any restriction on multiple

paths; rather it prevents loops at the time of data

packet forwarding.

When a node receives a data packet, the node

records the previous hop, nph, of the packet. The

node then stochastically determines the next hop,

nnh, for the packet from the routing table. If nnh is

the same as nph, the node can exclude nph as the next

hop. The node then stochastically determines an

alternate next hop. As a result, single-hop looping of

data packets does not occur.

Ⅴ. Performance Evaluation

To evaluate the effect of bidirectional path setup

and loop prevention on performance, simulations

were performed using the ns-2 simulator. For

performance comparison, LP-AntHocNet refers to

the implementation of AntHocNet where the

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01

72

Type of loops
Percentage

(%)

Packets without looping 90

Packets with only single-hop looping 7.5

Packets with only multi-hop looping 2.1

Packets with both single- and multi-hop

looping
0.4

Table 1. Percentage of packets experiencing loops.

Fig. 5. Ratio of loop occurrence according to loop length.

proposed single-hop loop prevention solution is

incorporated. LP-BD-AntHocNet refers to the

implementation of AntHocNet where the loop

prevention solution and bidirectional path setup

scheme are incorporated.

5.1 Simulation setup
A total of 50 nodes were randomly deployed in

an area of 1500×300 m
2. For each scenario, ten

simulations were run. The results were averaged and

95% confidence interval was computed. Each

simulation was run for 600 sec. At the MAC layer,

IEEE 802.11 Distributed Coordination Function

(DCF) was used. The propagation model used was

two-ray ground. The transmission range was

assumed to be 250 m. Random waypoint mobility

model was used.

In the random waypoint mobility model
[17],

initially, nodes are placed at random locations within

the simulation area. Each node pauses at its current

location for some time. When that time expires, the

node chooses a random location and starts moving

to that location with a speed uniformly distributed

between S_Min and S_Max, where S_Min is the

minimum speed limit and S_Max the maximum

speed limit. Upon reaching the destination point, the

node repeats the process; that is, pause at that point

for some time and then choose another random

destination point and start moving towards that point

with a speed uniformly distributed between S_Min

and S_Max.

Bidirectional communication sessions were used

where five randomly chosen pairs of nodes

communicated with each other. A communication

session between a pair of nodes A and B is

bidirectional when A sends data to B and B sends

data to A. The traffic type used was

Constant-Bit-Rate (CBR). We did not use TCP,

although it seems appealing for bidirectional

sessions, because its flow control and congestion

control features can have indirect influence on the

performance of the routing protocol.

5.2 Simulation results
In Section 4, we mentioned single-hop loops,

which involve two nodes. We extend that definition

to n-hop loops. Therefore, the loop length is n-hops

if it involves n+1 nodes.

Table 1 lists the percentage of packets that has

experienced some type of loop. As indicated in

Table 1, approximately 10% of the data packets

encounter some type of looping. Approximately

7.5% encounter single-hop looping whereas

approximately 2.1% encounter multi-hop looping.

Approximately 0.4% of the packets encounter both

single- and multi-hop loops. This means that among

those packets that encounter looping, approximately

79% encounter single-hop looping. Therefore, our

proposed single-hop loop prevention scheme is

highly beneficial.

As shown in Fig. 5, packets encounter single-hop

loops much more frequently. As the loop length

increases, its ratio of occurrence decreases. The

figure shows results for loops of up to six-hops

long. Loops of even higher length (up to 15 hops)

also occur, but at a much smaller ratio. Longer

loops are more likely to cause the Time-to-live

(TTL) field of a packet to expire, and as a result of

www.dbpia.co.kr

논문 / 양방향 경로 설정 루 방지를 통한 개선된 AntHocNet

73

Fig. 6. Packet ratio according to loop count.

Fig. 7. Comparison of path setup delay. Fig. 8. Comparison of end-to-end delay.

which the packet is dropped.

Fig. 6 shows packet ratios according to loop

count. Loop count represents the number of times a

packet loops. As this figure shows, as the loop count

increases, the packet ratio decreases. The largest

ratio of packets loops only once. A packet that

experiences a smaller loop count can still reach the

destination, but with a slightly larger delay. As the

loop count increases, it can either cause the packet

to be dropped because of the of the TTL field

expiring, or it can cause a long end-to-end delay if

the packet ultimately reaches the destination.

Fig. 7 compares the bidirectional path setup delay

of AntHocNet and BD-AntHocNet. The path setup

delay for BD-AntHocNet is approximately half of

that of AntHocNet. This is because BD-AntHocNet

sets up forward and backward paths simultaneously,

whereas AntHocNet has to setup forward and

backward paths separately. Consequently, in order to

set up bidirectional paths, AntHocNet requires twice

as much time as BD-AntHocNet.

For both schemes, path availability delay tends to

increase with increasing pause time. This can be

explained by a characteristic of the random waypoint

mobility model. As found in [19], in this model,

nodes tend to concentrate in the center of the

deployment area. This tendency decreases as the

pause time increases
[20]. Higher concentration in the

middle means fewer hops between source and

destination, and therefore shorter path setup time

and smaller path availability delay.

Fig. 8 compares the end-to-end delay of

AntHocNet and LP-AntHocNet. The end-to-end

delay for both schemes decreases with increasing

pause time. A common reason for this behavior is

that at higher pause times, the network is less

dynamic, therefore there are fewer path breakages.

Fewer path breakages results in fewer packets

waiting in queue for route repair. As a result the

average end-to-end delay is reduced.

Data packet looping increases the end-to-end

delay of data packets. From Fig. 8, it is clear that

loop prevention can significantly reduce end-to-end

delay, especially for smaller pause times. The

performance difference between AntHocNet and

LP-AntHocNet is higher, with 79% improvement for

the smallest pause time, and it gradually diminishes

to 56% as the pause time increases.

Fig. 9 shows a comparison of the normalized

overhead. For all three schemes, the overhead drops

with increasing pause time. At higher pause times,

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01

74

Fig. 9. Comparison of normalized overhead. Fig. 10. Comparison of packet delivery ratio.

the network is less dynamic, and therefore, there are

fewer path breakages, which means overhead caused

by route repair ants is also reduced. Similarly to

data packets, an ant can go into a loop and continue

looping before exiting and moving toward the

destination. This causes additional overhead.

Therefore, loop prevention results in considerable

overhead improvement. Use of the bidirectional path

setup scheme-LP-BD-AntHocNet-results in further

overhead reduction. This is as expected because in

LP-BD-AntHocNet, the constructed backward paths

often eliminate the need for reactive path setup. It

should be noted that in LP-BD-AntHocNet,

overhead reduction is mainly achieved for two

reasons: 1) a reduction in the number of times path

setup is required, and 2) a reduction in the number

of times a route repair is required. The effect of the

latter diminishes as the pause time increases, and

consequently, the performance difference between

LP-AntHocNet and LP-BD-AntHocNet narrows.

Fig. 10 shows a comparison of packet delivery

ratios. Such ratio is the percentage of sent data

packets successfully received at the destination.

LP-AntHocNet and LP-BD-AntHocNet perform

nearly identically and much better than AntHocNet.

Again, it is evident that loop prevention results in

significant improvement in terms of delivery ratio.

For all three schemes, the delivery ratio increases

as the pause time increases. This is because at

longer pause times, the network is less dynamic and

there are fewer path breakages. It is interesting to

note that the delivery ratio for AntHocNet, reported

in [9], drops as the pause time increases. The

authors explain that due to sparseness of their

network, the pause time affects connectivity in such

a way that at high pause times, some nodes remain

disconnected from the rest of the network for a long

time and thus no packets can be delivered to them.

Ⅵ. Conclusion

In this paper, two major shortcomings of

AntHocNet, unidirectional paths and looping issues,

were identified. A bidirectional path construction

scheme was presented. The simulation results

showed that for a similar delivery ratio, the

proposed scheme provides considerable performance

improvement in terms of end-to-end delay and

overhead. Furthermore, solutions to the looping

issues were proposed and evaluated. The simulation

results indicated that looping was a serious problem

in AntHocNet and degraded the performance

significantly. The results also showed that single-hop

looping was by far the most frequently occurring

looping type, and approximately 7.9% of all data

packets (or approximately 79% of looping packets)

encounter them. The results demonstrated that

single-hop loop prevention significantly reduces

end-to-end delay and overhead, and improves the

delivery ratio.

References

[1] A. Boukerche, B. Turgut, N. Aydin, M. Z.

www.dbpia.co.kr

논문 / 양방향 경로 설정 루 방지를 통한 개선된 AntHocNet

75

Ahmad, L. Bőlőni, and D. Turgut, “Routing

protocols in ad hoc networks: A survey,”

Comput. Netw., vol. 55, pp. 3032-3080, 2011.

[2] Z. Chenyu and D. C. Sicker, “A survey on

biologically inspired algorithms for computer

networking,” IEEE Commun. Surv. & Tuts.,

vol. 15, pp. 1160-1191, 2013.

[3] S. Bitam, A. Mellouk, and S. Zeadally,

“Bio-inspired routing algorithms survey for

vehicular Ad Hoc networks,” IEEE Commun.

Surv. & Tuts., vol. 17, pp. 843-867, 2015.

[4] F. Dressler and O. B. Akan, “Bio-inspired

networking: from theory to practice,” IEEE

Commun. Mag., vol. 48, pp. 176-183, 2010.

[5] F. Dressler and O. B. Akan, “A survey on

bio-inspired networking,” Comput. Netw., vol.

54, pp. 881-900, 2010.

[6] M. Roth and S. Wicker, “Termite: ad-hoc

networking with stigmergy,” in Proc. IEEE

GLOBECOM, Dec. 2003.

[7] H. F. Wedde, M. Farooq, T. Pannenbaecker,

B. Vogel, C. Mueller, J. Meth, and R.

Jeruschkat, “BeeAdHoc: an energy efficient

routing algorithm for mobile ad hoc networks

inspired by bee behavior,” in Proc. 7th Annu.

Conf. Genetic and Evolutionary Computation,

pp. 153-160, Washington DC, USA, Jun. 2005.

[8] M. Gunes, U. Sorges, and I. Bouazizi,

“ARA-the ant-colony based routing algorithm

for MANETs,” in Int. Conf. Parall. Process.,

pp. 79-85, 2002.

[9] G. Di Caro, F. Ducatelle, and L. M.

Gambardella, “AntHocNet: an adaptive

nature-inspired algorithm for routing in mobile

ad hoc networks,” Eur. Trans. Emerging

Telecommun. Technol., vol. 16, no. 5, pp.

443-455, Oct. 2005.

[10] G. D. Caro, F. Ducatelle, and L. M.

Gambardella, AntHocNet: An adaptive

nature-inspired algorithm for routing in

mobile Ad Hoc networks, in Technical Report,

No. IDSIA-27-04-2004, 2004.

[11] M. Dorigo, G. D. Caro, and L. M.

Gambardella, “Ant algorithms for discrete

optimization,” Artif. Life, vol. 5, pp. 137-172,

1999.

[12] K. M. Sim and S. Weng Hong, “Ant colony

optimization for routing and load-balancing:

survey and new directions,” IEEE Trans. Syst.,

Man, and Cybernetics - Part A: Syst. and

Humans, vol. 33, pp. 560-572, 2003.

[13] J. S. Baras and H. Mehta, “A probabilistic

emergent routing algorithm for mobile Ad

Hoc networks,” in Proc. WiOpt03: Modeling

and Optimization in Mob. Ad Hoc and Wirel.

Netw., Sophia-Antipolis, France, Mar. 2003.

[14] K. M. Sim and W. H. Sun, “Multiple

ant-colony optimization for network routing,”

in Proc. First Int. Symp. CyberWorld, pp.

277-281, Nov. 2002.

[15] G. D. Caro and M. Dorigo, “AntNet:

Distributed stigmergetic control for communi-

cations networks,” JAIR, vol. 9, pp. 317-365,

1998.

[16] C. E. Perkins and E. M. Royer, “Ad-hoc

on-demand distance vector routing,” in Proc.

2nd IEEE Workshop on Mob. Comput. Syst.

and Appl., p. 90, Feb. 1999.

[17] D. B. Johnson and D. A. Maltz, “Dynamic

source routing in Ad Hoc wireless networks,”

in Mob. Comput., vol. 353, pp. 153-181, 1996.

[18] R. R. Stewart, Stream Control Transmission

Protocol, in RFC 4960, 2007.

[19] C. Bettstetter and O. Krause, “On border

effects in modeling and simulation of wireless

ad hoc networks,” in Proc. IEEE MWCN,

2001.

[20] D. M. Blough, G. Resta, and P. Santi, “A

statistical analysis of the long-run node spatial

distribution in mobile ad hoc networks,” in

Proc. MSWiM'02, pp. 30-37, Atlanta, Georgia,

USA, Sept. 2002.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-01 Vol.42 No.01

76

라 만 샴스 우르 (Shams ur Rahman)

2007년：페샤와르 공학 기술

학교 졸업

2012년：GIK 과학기술연구원

석사

2012년～2014년 : GIK 과학기

술연구원, 연구원

2014년~ 재：경북 학교 자

공학부 박사과정

< 심분야> 집단생태특성 모방형 네트워크, 지연내

성망, 무선 애드혹 네트워크

남 재 충 (Jae-Choong Nam)

2010년：경북 학교 자 기

컴퓨터학부 졸업

2013년：경북 학교 자 공학

부 석사

2013년~ 재：경북 학교 자

공학부 박사과정

< 심분야> 차세 이동 네트워크, 무선 애드혹 네

트워크, 드론 ICT 융합 기술

아즈말 칸 (Ajmal Khan)

2007년：페샤와르 공학 기술

학교 졸업

2010년：페샤와르 공학 기술

학교 석사

2014년：경북 학교 자공학

부 박사

2014년~2016년 : IQRA 국립

학교 조교수

2016년~ 재 : COMSATS 정보기술연구원 조교수

< 심분야> 차량 애드혹 네트워크, 지연내성망, P2P

네트워크

조 유 제 (You-Ze Cho)

1982년：서울 학교 자공학

과 졸업

1983년：한국과학기술원 기

자공학 석사

1988년：한국과학기술원 기

자공학 박사

1989년~ 재：경북 학교 자

공학부 교수

1992년~1994년：Univ. of Toronto, 방문교수

2002년~2003년：미국 국립표 연구소(NIST), 객원

연구원

< 심분야> 드론 ICT 융합 기술, 차세 이동 네트

워크, 무선 애드혹 네트워크, 이동성 리 기술,

Future Internet

www.dbpia.co.kr

	Improved AntHocNet with Bidirectional Path Setup and Loop Avoidance
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Overview of AntHocNet
	Ⅲ. Bidirectional Path Setup
	Ⅳ. Looping Issues and Solutions in AntHocNet
	Ⅴ. Performance Evaluation
	Ⅵ. Conclusion
	References

