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반지도식 자기조직화지도를 이용한 wifi fingerprint 

보정 방법 

타이광퉁 , 정 기 숙*, 금 창 섭*

Wifi Fingerprint Calibration Using Semi-Supervised Self 

Organizing Map
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요   약

무선 RSSI fingerprinting 방식은 기존 무선 인프라를 이용하면서 적정수준의 정확도를 얻을 수 있는 실내위치 

인식 방법 중의 하나이다. 하지만 라디오 맵 구성( fingerprint calibration) 과정에서 목표 환경의 다양한 위치에서 

정확한 물리적 좌표와 무선 신호를 측정해야 하므로 시간과 노력이 많이 소요된다. 이 논문은 이러한 방식으로 위

치 정보를 수집하지 않고 반지도식 자기조직화지도 학습 알고리즘을 사용하여 labeled RSSI를 얻고 RSSI 조합으

로부터 맵을 구성하는 방법을 제안한다. 모의 데이터에 대한 실험을 통해 제안 방법이 fingerprint 데이터베이스로

부터 1%의 RSSI 샘플을 가지고 효과적인 전체 맵을 얻을 수 있다는 결론을 얻었다.
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ABSTRACT

Wireless RSSI (Received Signal Strength Indication) fingerprinting is one of the most popular methods for 

indoor positioning as it provides reasonable accuracy while being able to exploit existing wireless infrastructure. 

However, the process of radio map construction (aka fingerprint calibration) is laborious and time consuming as 

precise physical coordinates and wireless signals have to be measured at multiple locations of target environment. 

This paper proposes a method to build the map from a combination of RSSIs without location information 

collected in a crowdsourcing fashion, and a handful of labeled RSSIs using a semi-supervised self organizing 

map learning algorithm. Experiment on simulated data shows promising results as the method is able to recover 

the full map effectively with only   RSSI samples from the fingerprint database.
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Ⅰ. Introduction

Nowadays, smartphone has become indispensable 

gadgets to everyone. Growing with their widespread 

use is the flourish of context awareness based 

services such as targeted advertisement, image 

geo-tagging, and proximity social networking. Their 

market value is estimated to worth US$10 billions 

by 2020
[1]. For proper functioning of such services, 

user dynamic location is the crucial information that 
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must be provided. Although Global Positioning 

System (GPS) units equiped in smartphone can 

obtain accurate location information in outdoor 

environment, they often perform poorly inside 

concrete buildings due to the fact that satellites' 

signal is none-exist or usually significantly week in 

indoor environments. New positioning techniques  

have been developed over the last decades
[2] to 

overcome that hurdle by utilizing different hardware 

requirements. Among them, the wireless 

fingerprinting technique has recently become a 

research focus
[3].

The approach is appealing as it can utilize 

existing wireless infrastructure while as the same 

time guarantees a reasonable level of localization 

accuracy. With the astonishing growth of public 

wireless networks, it is foreseeable that the approach 

has enormous potential. The main idea of 

fingerprinting method hinges on a reasonable 

assumption that similarity in geographic domain is 

transferable to signaling domain. In essence, wireless 

signal profiles measured at proximity locations 

should look noticeably similar. Therefore if we have 

a database of fingerprints , e.g. signal profiles 

measured at known locations, localizing an 

individual become straightforward by querying the 

database for location with the most similar signal 

profile.

However, fingerprinting-based method is without 

limitations. The need for manual calibration of the 

database is a key bottleneck since it is labour 

intensive. Further, the process has to be repeated for 

each new target area, or whenever there is a 

significant rearrangement of current environment, for 

example when a new wireless access point (AP) is 

added or existing one is repositioned. The cost of 

manual calibration thus hinders the widespread 

adoption of the method. Reducing the amount of 

calibration effort while retaining the localization 

accuracy is the main target of this research.

Early approaches
[4,5] adopted the interpolation 

technique to recover signals at unknown locations. 

Basically, only a reduced number of locations are 

considered for wireless signal measures while the 

remaining locations' signal can be recover with 

mathematical computation. For that, knowledge of 

APs’ locations must be available and a valid model 

of signal propagation has to be provided. 

Subsequently, some other works
[6,7] have embraced 

the idea of utilizing crowdsourced data for inferring 

the full radio map. In these approaches, general 

users can participate in the data collection activity 

during normal operation of wireless devices. The 

collected data of this type is considered as unlabeled 

samples since the true locations of measurement are 

not known. By combining with some labeled 

samples, e.g. signal measurements at reference 

points (RP), full radio map can be inferred using 

semi-supervised learning techniques. Meanwhile, a 

large number of works
[8-10] exploits additional data 

from inertial sensors embedded in smartphone. 

Although they can reduce the calibration efforts in 

some extent, the engagement of additional sensors 

raises new issues, such as availability, battery 

consumption and device heterogeneity.

In this research, we endorse the idea of 

combining labeled data and unlabeled data for 

learning the radio map. While solving the question 

of assigning location information for the unlabeled 

signal samples, previous methods formalize this into 

a projection problem where high dimensional RSSI 

data is projected onto the geographical space. Here, 

we view the problem as a matter of data cluster 

labeling. We first divided the indoor plan using grid 

lines into small cells of predefined size then 

consider cell centers as predefine locations. At the 

same time, the RSSI samples are grouped into 

clusters based on their similarity. Finally, the 

resulting clusters are mapped to the locations in a 

manner that preserving local topology. We apply a 

self organizing map learning (SOM) algorithm to 

integrate the two tasks into one framework. As the 

algorithm is known for regularly producing arbitrary 

results, we use labeled samples to guide the learning 

process to approach consistent solution.

The rest of the paper is organized as follows. In 

section II we briefly explain the basic concept of 

fingerprinitng method and relate works for 

fingerprinting map calibration. Section III explains 

the core concept of SOM learning and how we 
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frame the problem into SOM learning framework. In 

Section IV, we describe the process of simulating 

data for experiment, followed by evaluation results 

of our method. We conclude with some remarks and 

discussions in the Section V.

Ⅱ. Related works

2.1 RSSI fingerprinting
Although various methods has been developed for 

indoor positioning systems, RSSI fingerprint 

matching is still one of the most popular 

approaches
[2,3]. Its basic idea is based on the 

assumption that each spatial location can be 

identified by a unique measurable feature such as 

wireless signal, just like a human fingerprint. The 

method consists of two phases: an offline training 

phase (a.k.a fingerprint calibration) and an online 

localization phase. In the first phase, indoor plan of 

a building is usually represented as a set of discrete 

locations then wireless signals are measured at these 

points. Next, machine learning technique is utilized 

to build localization model that creates a mapping 

between locations and signals. The mapping is 

called fingerprint database. In the online localization 

phase, wireless signals measured by a user's 

smartphone is sent to system server to query the 

user's current location. A localization algorithm such 

as k-Nearest Neighbor (k-NN) at the server estimates 

the most likely location by matching the query 

signal with the fingerprints in the database.

The accuracy of a fingerprint based localization 

system is highly dependent on the quality of training 

data that is used for building the fingerprint 

database. The quality is defined solely by two 

factors: the accuracy of measured signals, and the 

density of RPs distribution. The strength of wireless 

signal is known to be temporally fluctuating and 

their measures also vary with many factors including 

device models, user’s physical positions and user’s 

movements, thus multiple measures at the same 

location has to be performed for better quality 

control of the signal. Beside, a fine-grained 

fingerprint database with a large number of RPs is 

a-must if high accuracy localization is required. As 

a result, collecting data for building the fingerprint 

database is usually a labor-intensive manual 

calibration. Furthermore, this process must be 

repeated if the training data are outdated due to 

changes in the environment such as addition, 

removal and relocation of APs. Reducing calibration 

efforts is therefore essentially important for practical 

implementation of fingerprint based indoor 

localization systems.

A recent favorable approach in reducing 

calibration efforts is utilizing a large amount of 

unlabeled data to learn the fingerprint database. 

Here, an unlabeled data sample is a wireless signal 

record from a smartphone without the location 

information of the device. Wireless signal profile 

with known location is called labeled sample. 

Collecting unlabeled samples is much easier than 

collecting the labeled samples as it can be done 

while a carrying-smarphone individual walking 

freely inside a target environment. It is especially 

suitable in a crowdsourcing system where wireless 

signals are collected from normal users while they 

are using localization service. Usually both 

unlabeled data and labeled data are provided as 

inputs to a semi-supervised learning machine so that 

it can learn to label the location information for the 

unlabeled samples.

2.2 Calibration with Multi-Dimensional Scaling
Multi-Dimensional Scaling (MDS) is a method 

widely used for visualizing high dimensional data. 

The algorithm aims to place samples in high 

dimensional space to -dimensional space (usually 

  ) such that the sample-between distances are 

preserved as much as possible. Each sample is then 

assigned coordinates in each of the  dimensions. 

The algorithm therefore can be adapted to learn the 

location coordinates of wireless signal in the 

fingerprint based localization systems
[6]. The 

classical MDS can be described as follows.

Let      be the wireless signal 

measurements where   is the number of 

measurements. Each  is a vector of   

dimensions where   is the number of APs 
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Fig. 1. A typical structure of a Self Organizing Map 
neural network

available in the indoor environment. The algorithm 

aims to map each sample  to a point   
 
  

in Euclidean space in a way that minimize the 

difference of distance between samples. Here 
 

 

are physical coordinates of the location  . Let    

be the Euclidean distance between  and   then 

the problem can be turned in to a optimization 

problem with a loss function of the form:

    


 ∥  ∥

The classical MDS has an analytical solution 

which can be found in popular advanced linear 

algebra textbooks.

The estimated coordinates from the classical MDS 

usually differ from the correct locations, thus 

adjustments need to follow. The authors in [6] 

proposed a re-calibration procedure using a small 

number of labeled samples as anchor points to 

correct absolute coordinates using linear 

transformation.

2.3 Calibration with Isomap
Another method considers the calibration problem 

as multidimensional reduction is Isomap
[7]. While 

MDS tries to find a lower dimension representation 

of the data with smallest distortion of the 

between-samples distances, the Isomap aims to 

preserve the local structure of samples. The 

algorithm is identical to the MDS with one 

exception is that the distance metric is Geodesic 

instead of Euclidean.

In the Isomap, the geodesic distances    are 

obtained by following procedure. First, a 

neighborhood graph is constructed from the high 

dimensional data (RSSIs). Each sample  is a 

vertex of the graph and it is connected to its   

nearest neighbors in Euclidean distance estimated 

from the data. The weight of an edge connecting 

two vertexes is defined as their Euclidean distance. 

The distance   then calculated as the sum of edge 

lengths along the shortest path connecting them. The 

shortest distance between two vertex can be found 

with the wellknown Floyd-Warshall algorithm.

Ⅲ. Method

3.1 Self Organizing Map
Self Organizing Map (SOM)[11] is a special type 

of artificial neural networks with a principal goal is 

transforming high dimensional input data into a 

much lower dimensional map, usually one or two 

dimensions. A typical structure of SOM is illustrated 

in Figure 1. Basically, it consists of a set of 

neurons, each is associated with two entities: a 

weight vector of the same dimension as the input 

data vectors; and a position in a map space. The 

arrangement of neurons is usually in the form a two 

dimensional regular spacing in a hexagon or 

rectangular grid. The structure of SOM describes a 

mapping from high dimensional input data space 

(input layer) into the map space. Mapping an input 

vector to a neuron is to search for the best neuron 

whose weight vector is the most similar to the given 

input. Therefore, similar input samples are grouped 

in the same neuron or its neighbors. Unlike other 

types of neural networks that base their learning on 

error-correction method, SOM learns their weigh 

vectors in a competitive process. 

Let  ⊂   be the input data,   be the set of 

SOM’s neurons, and  be the ×  weight 

matrix. Here,   is the dimension of the input and 

  is the size of the output map, that is the number 

of neurons. Row   of the matrix   is the weight 
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vector corresponding to the   neuron of the output 

map. The learning algorithm is based on this 

following pattern: given an input sample ∈ , fi

nd a neuron ∈  whose weight vector is the most 

similar to  :   ∈ ; that neuron 

is call best matching unit (BMU); adjust the weight 

vectors of all neurons follows:

  

where   is the current number of training iterations, 

 is learning rate that varies over time,    is 

a neighborhood function centered around the BMU. 

Gaussian kernel is a common choice:



 





 

where    is the Euclidean distance between two 

neurons and   in the output map space, and  

is a varying neighborhood size. 

3.2 Fingerprint map calibration using SOM
SOM with a few neurons behaves somewhat 

similar to  -mean clustering. On the contrary, 

larger SOM rearrange input data in a way that 

fundamentally topological in character. We take 

advantage the later property to construct the full 

radio map for fingerprint-based localization. The 

indoor plan of the site is divided into small cells of 

identical size using grid lines. We then position the 

output neurons of the SOM at the centers of the 

cells. The set of RSSI samples, collected either by 

crowdsourcing system or design process, is 

considered as input data   for learning the weight 

vectors. It is common that the result of learning 

SOM is inconsistent, output map is arbitrary, 

depending on the initialization strategies. Therefore, 

we may expect that the result is a distorted image 

of the truth map. To overcome this drawback, we 

utilize the known locations of labeled samples to 

lock the output map to those anchors. It can be done 

in following fashion.

Let   ∪  where   is the set of 

labeled samples and   is the set of unlabeled 

samples. Each labeled sample is coupled with its 

location to make a tuple   where ∈ , 

      and ∈  is its label, e.g. the index 

of neuron that corresponds to the location of 

measurement . Each location  is implicitly 

mapped to a tuple 
 
  of known physical 

coordinates in a     correspondence. For the sake 

of simplicity, when we mention the index  of a 

neuron, we also imply the presence of its physical 

coordinates.  Our training algorithm has two 

modifications from the classical SOM learning. First, 

in the initialization of the weigh vectors, we use the 

whole labeled samples to learn their initial values. In 

the second step, all samples are drawn sequentially 

to train the weight vectors as in classical method. 

However, for each labeled sample input , we do 

not search for BMU, instead, its BMU is 

immediately set to be the label . That forces  

consistently to be BMU of   and help anchoring 

the output map to known locations. The pseudocode 

of the algorithm is shown on Figure 2.

Fig. 2. Pseudocode for the weight matrix learning 
algorithm from labeled and unlabeled samples.
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Ⅳ. Experiment results

4.1 Data simulation
We evaluated the performance of the proposed 

method on simulated data. The data is generated 

with an indoor log-distance path-loss propagation 

model. In the model, received wireless signal power 

is defined as:

    


 

where the power  ∙ is given in logarithmic 

scale,   is a reference distance,   is a path 

exponent, and   is a normally distributed random 

noise which models the shadowing effect. The two 

parameter  and are dependent on the local 

propagation environment. In our simulation, we set 

   and    to reflect an office 

environment. Typically, the reference distance   is 

set to   and the signal power at the reference 

   is known in advance. Here we assume 

that APs have different values of    which 

follow a normal distribution of mean    and 

standard deviation  .

We assume that our experiment site is a single 

floor of a office building of size ×  meters. 

In that we assign   APs randomly using Latin 

hypercube sampling to guarantee their signal range 

cover the site map sufficiently. As for fingerprinting 

database construction, we divided the map into grid 

of ×  cells. We using the aforementioned 

signal propagation model to generate RSSI for every 

point at center of the cells. That makes a database 

of ×   fingerprints, each is a tuple 

of  where       is a vector of 

wireless signal measurements and      

is the location index where measurement is taken. In 

our experiment, we picked only fraction of these 

samples to be labeled samples for the 

reconstructions the database. As for unlabeled data, 

we generate 10,000 signal samples from random 

location of the map. The location index of these 

samples is supposed to be unknown to the learning 

procedure, and later is used for evaluation of the 

localization performance.

4.2 Evaluation results
The SOM is learnt from the dataset combining of 

all unlabeled samples and a specific amount of 

labeled samples drawn randomly from the 

fingerprint database. Once the topological SOM map 

is built, the fingerprint database is available in form 

of its weight matrix   whose row   is the weight 

values of neuron  , and it can be considered as 

representative signal vectors at   locations. We 

then predict locations for unlabeled samples using 

-nearest neighbor algorithm to report the localization 

errors. Note that in the learning procedure, 

coordinates of unlabeled samples are not known, 

thus it is normally feasible to reuse these samples 

for the localization accuracy evaluation. The error is 

estimated as average Euclidean distance from 

predicted location to the original location.

During the training process, the learning rate 

parameter  and the neighborhood size 

parameter  are adapted to the number of 

training iterations following a exponential decay 

function:

 






where   is the total number of training iterations, 

 ,   and   are the parameter value at 

the beginning, the end and at   learning iteration. 

We set   ,   , 

   and   . We trained the 

network for multiple rounds, in each round, all 

samples are presented sequentially. At the end of 

each round, overall training error is estimated as the 

average localization error of unlabeled samples. 

Figure 3 shows the convergence of the network as 

the training errors approach a constant small level 

after only 15 training rounds.

To investigate the effectiveness of full radio map 

recovery, we learned the networks using different 
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Fig. 3. Convergence of the learning algorithm Fig. 4. Comparison of the effectiveness of radio map 
recovery from partial labeled data.

amount of labeled data, ranging from  to  

number of samples, then evaluate the localization 

errors. The baseline error is   corresponding to 

 fingerprint load. In Figure 4, the blue solid 

line represents the localization errors of the proposed 

method versus the percentage of fingerprint data 

load. Without guidance of labeled samples, the 

localization errors is very large. However, the error 

is sharply decreased with the presence of labeled 

samples. With only   of fingerprint load, the 

achieved errors is mildly inferior to that of the 

baseline result. In extreme scenario where   

fingerprint provided, we are only   off the 

baseline accuracy. The results clearly show the 

effectiveness of our proposed method

In the Figure 4, we also present the localization 

errors archived with the same settings of the other 

two methods: MDS and Isomap. Without the labeled 

data, these two methods also perform poorly. Their 

accuracies increase quickly once the labeled samples 

are introduced. However, they only keep up to the 

performance of the SOM method when the 

percentage load is at least 20%. After that, the three 

algorithm behave identically. The results show that 

our method is more effective as learning the radio 

map with a small percentage of labeled samples.

Additionally, our method has more practical 

usefulness compared to MDS and Isomap as training 

a SOM can be performed in an online fashion, that 

is data samples are presented sequentially. In MDS 

and Isomap, the whole data is used for training at 

the same time. Distances between every pair of 

samples have to be estimated which is 

computationally expensive, especially when a large 

crowdsourced data is used. On the contrary, our 

proposed method can utilize a previously built map 

to initialize the weigh vectors of the SOM then 

update their parameter values continually as new 

data samples are presented. No re-training with the 

whole data is necessary. This feature is extremely 

beneficial to the practical implementation of indoor 

positioning system as it is wellknown that radio map 

needs to be updated frequently due to the fluctuating 

nature of indoor environment.

Ⅴ. Conclusion

In this paper, we proposed a method to learn 

radio map for indoor positioning. By utilizing a 

combination of crowdsourced RSSIs without 

location information and a handful of wireless 

signals measured at precise reference locations, we 

are able to construct the full map with acceptable 

level of accuracy degradation. Evaluation on 

simulation data show that the method can fully 

recover the radio map with only 20% fingerprint 

load. Event in the extreme case where only 1% fi

ngerprint data is presented, the constructed map still 

manage to lost a 0.4m of localization accuracy. Our 

method has not utilized the dynamic of  user 
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movement which can be acquired with other type of 

sensors such as gyroscope or accelerometer. We 

believe that such information can be further improve 

the performance our method and we will follow that 

road in the future.
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