
SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및

QoS 제어

아팍 무하마드 , 송 왕 철°

Real-Time Classification, Visualization, and QoS Control of

Elephant Flows in SDN

Afaq Muhammad , Wang-Cheol Song°

요 약

오래 지속되는 플로우인 엘리펀트 플로우는 데이터 센터에서 많은 대역폭을 소비해서, 지연에 민감하고 짧은

시간 흐르는 플로우인 마이스 플로우의 흐름을 방해하게 된다. 이는 마이스 플로우에 대해 적지않은 지연을 발생

시켜서, 결과적으로 그 네트워크에서 동작하고 있는 응용의 성능을 저하시키게 된다. 그러므로 데이터 센터 네트

워크는 이를 분류하고 시각화 해내어 실시간으로 QoS 프로비져닝을 제공할 수 있어야 한다. 본 논문에서는 다음

에 대해 논한다. (1) SDN에서 sflow를 이용한 엘리펀트 플로우의 실시간 검출 및 시각화를 위한 프레임워크 제

시. 이는 시각화된 토폴로지에서 스위치를 더블클릭 하므로써 스위치를 통과하는 엘리펀트 플로우를 점검할 수 있

게 한다. (2) SDN 제어기에 의해서 정의되고 관리되는 QoS를 보장하는 접근 및 OpenFlow에 의해 제공되는 규

격. 본 논문에서는 SDN 네트워크내에서 rate-limiting (traffic-shaping) 분류 기법을 사용하는 것을 주로 논의한다.

Key Words : Elephant Flows, Classification, Detection, Visualization, Floodlight, sFlow, Avior, QoS,

Rate-limiting, SDN, Mininet

ABSTRACT

Long-lived flowed termed as elephant flows in data center networks have a tendency to consume a lot of

bandwidth, leaving delay-sensitive short-lived flows referred to as mice flows choked behind them. This results in

non-trivial delays for mice flows, eventually degrading application performance running on the network.

Therefore, a datacenter network should be able to classify, detect, and visualize elephant flows as well as

provide QoS guarantees in real-time. In this paper we aim to focus on: 1) a proposed framework for real-time

detection and visualization of elephant flows in SDN using sFlow. This allows to examine elephant flows

traversing a switch by double-clicking the switch node in the topology visualization UI; 2) an approach to

guarantee QoS that is defined and administered by a SDN controller and specifications offered by OpenFlow. In

the scope of this paper, we will focus on the use of rate-limiting (traffic-shaping) classification technique within

an SDN network.

논문 17-42-03-09 The Journal of Korean Institute of Communications and Information Sciences '17-03 Vol.42 No.03
https://doi.org/10.7840/kics.2017.42.3.612

612

※ This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)

funded by the Ministry of Education(NRF-2016R1D1A1B01016322).

First Author : Jeju National University Department of Computer Engineering, afaq24@gmail.com, 학생회원

° Corresponding Author : Jeju National University Department of Computer Engineering, kingiron@gmail.com, 종신회원

논문번호：KICS2016-12-378, Received December 11, 2016; Revised February 7, 2017; Accepted February 17, 2017

www.dbpia.co.kr

논문 / SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어

613

Ⅰ. Introduction

Most of the flows in data center networks tend to

be short-lived mice flow, whereas the majority of

packets belong to a few long-lived elephant flows.

Mice flows are bursty, latency-sensitive applications

like Voice over IP (VoIP) and search results,

whereas elephant flows on the other hand are large

transfers, such as backups, or back-end operations
[1].

Network resources are utilized based on the

requirements and limitations of different applications

The tendency of elephant flows to fill buffers

end-to-end causes significant delay to mice flows

that actually share the same buffers with them,

eventually degrading the overall network

performance. Routing method like ECMP in data

center networks may route elephant flows onto same

links, but this yields to lower quality network

utilization because other links will be under-utilized
[2].

Hence, it is required to detect elephant flows,

visualize them, and finally handle them using some

QoS provisioning techniques.

Several techniques like Hedera
[3], and Mahout[4]

are currently available for the detection of elephant

flows. Each technique has its own advantages and

disadvantages. In this paper, we propose a

framework based on sFlow
[5] sampling technology

that enables to detect elephant flows in SDN[6]

systems by means of our developed SDN control

application. The elephant flows can then be

visualized in a separate pop-up window linked to

sFlow-RT
[7] traffic analysis tool. Since SDN systems

use OpenFlow switches, the sFlow-RT receives a

stream of sFlow measurements from the OpenFlow

switch, rapidly detects elephant flows in real-time,

and notifies the control application. Furthermore, the

double-click functionality in our framework allows

the administrator to visualize all flows including

elephant flows that traverse a switch in the network

topology.

The major challenge after the detection and

visualization of elephant flows is to properly handle

them. They may be either rescheduled, reshaped,

reprioritized, or routed through high speed links by

means of some QoS technique. While efforts in this

area over the past include Overprovisioning, Type of

Service (ToS), Differentiated Services (DiffServ),

Integrated Services (IntServ), Resource Reservation

Protocol (RSVP), Multiprotocol Label Switching

(MPLS), and Traffic Shaping; we will only focus on

the last one in this paper. Specifically, this will

focus on how Traffic Shaping (rate limiting) QoS

technique can be used to handle elephant flows

properly within an SDN network.

The remainder of the paper is organized as

follows. In Section II, the state of the art approaches

for elephant flows detection and handling in data

center networks are described. In Section III, the

architecture of the proposed framework is presented.

In Section IV, the results obtained from the

real-time detection and visualization of elephant

flows are explained. In Section V, the QoS module

is presented, and in Section VI, the QoS handling of

the detected elephant flows by means of this module

is shown. In Section VII, the applicability of our

proposed framework to large-scale SDN networks is

shown. The paper is concluded in Section VIII.

Ⅱ. Overview of Elephant Flows Detection
Systems

The mice and elephant flows may degrade

network performance if not handled properly.

Significant overhead can be yielded at both the data

plane and control plane if a high number of such

flows are aggregated at the end of SDN network

devices
[8].

Equal-cost multi-path (ECMP)[9] is a routing

technique to load-balance traffic over multiple

available paths using flow hashing methods. The

ECMP-enabled network devices are configured with

various possible forwarding routes for a given

subnet. A packet having multiple potential paths is

routed on the one that matches to a hash of packet

header’s selected fields modulo the number of

routes, eventually distributing load to each subnet

among multiple routes
[8,9]. However, the main

disadvantage of ECMP is that the collision of two

more elephant flows on their hash may lead them on

the same output port, eventually resulting in a

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-03 Vol.42 No.03

614

bottleneck situation. This may also overwhelm

switch buffers affecting overall link and switch

utilization[8].

Hedera
[3] is a flow scheduling system to avoid the

disadvantages of ECMP. It gets flow information

from switches, determines routes for flows, and

sends them to switches for re-routing the traffic

accordingly. When it detects elephant flows, the

edge-switch forwards it along one of its equal-cost

routes. This route is utilized until the elephant flow

reaches a pre-defined threshold rate. Hedera then

dynamically computes a suitable route for it and

installs that path on the switch
[8]. However, in

Hedera, elephant flows are detected by periodic

polling that retrieves the per-flow statistics from

each of the edge switch. Since, each edge-switch

will be required to manage a huge amount of flows,

which may not only be infeasible in the real

OpenFlow switch implementation, but may also

cause network congestion between polls.

Mahout
[4] manages flow traffic by introducing

timely periodic detection of elephant flows. It

addresses limitations in Hedera by monitoring and

detecting elephant flows at the end host through a

shim layer in the Operating System instead of

monitoring the edge-switches. However, Mahout is

without an automated decision-making module that

can continually determine a suitable threshold based

on information from the network for elephant flow

detection
[10].

Our proposed approach based on sFlow

technology consists of multiple features unlike the

aforementioned approaches. It is able to classify,

detect, handle (QoS), and visualize elephant flows in

SDN. More precisely, the detected elephant flows

are handled by the QoS module, which forwards

them to rate-limited queues, eventually subjecting

them traffic-shaping QoS technique.

Ⅲ. Framework for the Detection,
Classification, and Visualization of

Elephant Flows

In our proposed framework, each switch (sFlow

agent) of a network topology is configured in such

a manner that they forward sFlow samples to sFlow

collector in real-time. The sFlow agent is a software

process that runs as a part of the network

management software within a device. It combines

flow samples and interface counters into sFlow

datagram that are sent across the network to an

sFlow collector. Packet sampling is usually

performed by the routing/switching ASICs,

providing wire-speed performance. The state of the

routing/forwarding table entries associated with each

sampled packet is also recorded. sFlow agents in

network devices use random sampling according to

the defined sampling rate and, therefore, can be used

to monitor high speed networks (Gbps speeds and

higher) with significant accuracy. The sampled data

is sent as UDP packets to the specified host and port

where sFlow collector software computes summary

statistics and possibly display the results graphically
[11].

A sampling rate of 10 is used in the experiments,

which means that out of every 10 packets captured

by an sFlow agent, one will be sent to the sFlow

collector.

sFlow-RT is a widely used sFlow collector and

traffic analysis tool to process sFlow packets

retrieved from the network. It sits in the control

plane of SDN stack and offers real-time monitoring

ability. It converts the retrieved datagram into flow

summary statistics, or defined actionable metrics that

are to be applied on the flows. A set of packets with

an identical property is called a flow key which is

observed periodically. The fields from a packet

header like source and destination IP addresses,

TCP/UDP port numbers usually specify the flow

key. Flow names are represented as metrics, and

programmatically accessible through RESTful

Northbound APIs. OpenFlow controller and sFlow

that are part of control plane software, use

Northbound API to provide control functionality to

SDN applications and summary statistics. Fig. 1

shows the functionality of several components used

in our proposed framework. Avior is a GUI for

OpenFlow networks management. It focuses on

usability and versatility with various dynamic

network statistics and useful management tools
[12].

www.dbpia.co.kr

논문 / SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어

615

Fig. 2. Flow Chart for ElephantFlow-record Function

Fig. 1. Proposed Framework

Fig. 3. Pseudocode for Double-click Function

Two essential JavaScript programs have been

developed and named ElephantFlow-record, and

proxy-server. Both these programs have been

implemented using node.js which is optimized for

very high performance I/O, and employs

asynchronous programming model. In addition, the

double-click feature have been added to Avior for

visualizing the recorded flows in real-time when a

switch node in the network topology is double

clicked in Avior GUI. The traffic samples may be

retrieved from a various devices like virtual

switches, physical switches, and hosts. Every single

interface of a device may be configured with sFlow

for monitoring with very little overhead. The

monitoring policy defines the sampling rate for each

link.

The developed flow classification control

application is generic, and records all types of TCP,

UDP, and ICMP elephant flows. Fig. 2 shows the

flow chart of ‘ElephantFlowRecord’ function defined

in JavaScript ElephantFlow-record program. This

function has a pre-defined threshold value for

detecting the elephant flows, as well as method to

push them to sFlow-RT. The flow keys allow

recording of any flow greater than the pre-defined

threshold value as elephant flow. The elephant flows

are classified by taking into account the list of

protocol numbers used in the Protocol field of the

IPv4 header. In that list, the protocol number of for

example TCP is 0x06 in Hexadecimal. So whenever

the condition for Flow key is equal to 0x06 then the

flow is classified and recorded as a TCP flow.

Similarly, other flows like UDP and ICMP have

Protocol numbers 0x11 (decimal 17) and 0x01

respectively. They are recorded accordingly

whenever flow keys match their protocol numbers.

In addition, our proposed framework enables users

to specify any flow by means of a comma separated

list of keys.

In Avior, the JavaScript topologyView has been

also customized to show the topology-related

information and the overall network topology in

Avior GUI. It consists of the functions defined for

rendering the legend and network topology using d3

(data driven documents) JavaScript library, showing

labels, click events, and creating as well as

displaying the network graph. It also gets flow

information from sFlow-RT that can be viewed

under each switch node of the network topology.

The developed ‘double-click’ function has been

embedded in JavaScript topologyView, and it

defines sFlow Agent (OVS) IP address, variables for

WebSocket server, and sFlow-RT. It results in a

new pop-up window which displays elephant flow(s)

traversing a switch node that has been

double-clicked in Avior GUI. The pseudocode for

double-click function is shown in Fig. 3.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-03 Vol.42 No.03

616

In order to overcome the restriction of browser’s

same origin policy that does not allow Avior to

communicate directly with Floodlight OpenFlow

controller
[13] and sFlow-RT, web sockets are used

which are not bound to this security policy. More

precisely, Avior communicates with Floodlight

OpenFlow controller and sFlow-RT by means of a

proxy server. Avior has initially only the Data Path

IDs (DPIDs) of the switches. It sends requests proxy

server in order to get IPs for corresponding DPIDs.

The proxy server forwards this request to Floodlight

OpenFlow controller, retrieves IP address and other

switch-related information, and sends a reply to

Avior. After getting the IP of the switch, Avior

sends a request to sFlow-RT to retrieve the names

of the recorded elephant flows. On double clicking

any switch node of the network topology shown in

Avior GUI, a new pop-up window opens which

displays all the flows traversing that particular

switch node. Fig. 4 shows the pseudocode for

JavaScript proxy-server program.

Fig. 4. Pseudocode for proxy-server Program

Ⅳ. Real-time Classification, Detection, and
Visualization of Elephant Flows

In order to validate the experiments, the physical

test-bed illustrated in Fig. 5 was realized. The

proposed framework is deployed on top of a linear

bus network topology. The network topology has

four OVSes, where each OVS is connected to one

more hosts. Fig. 6 shows the same network topology

in Avior GUI, where the elephant flows traversing

each switch node are visualized by simply double

clicking that switch node.

Three different scenarios have been investigated,

i.e. detection and visualization of elephant flows

classified as UDP, TCP, and ICMP. The threshold

value of 100KBps (800Kbps) has been pre-defined

in ElephantFlow-record control application. Any

flow surpassing this threshold value is recorded is

elephant flow. Each of the scenarios is explained in

detail in the following sub-sections.

Fig. 5. Linear Bus Network Topology with Proposed
Framework

Fig. 6. Linear Bus Network Topology in Avior GUI

4.1 Detection and Visualization of Flows
Classified as UDP

The emphasis is to visualize the elephant flows

generated by users. Fig. 5 shows that each switch in

the network topology is connected to at least one

host. The users on hosts H4, H2, and H1 generate

traffic destined to hosts H3, H4, and H3

respectively. Fig. 7 shows all three detected elephant

www.dbpia.co.kr

논문 / SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어

617

Fig. 9. ICMP Flood Elephant Flows
Fig. 7. UDP Flows Traversing S3

flows traversing switch node S3 when it is double

clicked in Avior GUI.

4.2 Detection and Visualization of Flows
Classified as TCP

Hosts H3 and H4 are configured to act as TCP

servers in this scenario, whereas hosts H2 and H1 as

TCP clients. The clients H1 and H2 generate TCP

traffic destined to TCP servers H3 and H4

respectively. This results in traffic traversing switch

nodes S1, S2, and S3. The elephant TCP flows are

visualized as shown in Fig. 8 when the switch node

S2 is double clicked in Avior GUI.

Fig. 8. TCP Flows Traversing S2

4.3 Detection and Visualization of Flows
Classified as ICMP

Usually access to a specific network resource is

denied as a result of a DoS attack. More precisely,

that particular network resource is overwhelmed

when it is targeted by a flood of illegitimate

connections. Some specific weaknesses in an IP

protocol are exploited by each type of DoS

attack
[14]. In this scenario, an elephant flow is

generated by means of flood ping from host H1

destined to host H3. The detection and visualization

of the generated elephant ICMP flow is shown in

Fig. 9.

4.4 Analysis of the Detected Elephant Flows
Table 1 explains the details of the detected and

visualized UDP, TCP, and ICMP elephant flows

shown in Fig. 7, Fig. 8, and Fig. 9 respectively. The

Metric column of the table shows the name of a

particular detected and visualized elephant flow, the

Top Key column represents the classification

protocol number, and the IP addresses of the source

and destination hosts of that flow, the Agent column

shows the sFlow-configured OVS switch node of the

network topology which forwards the elephant flow,

the Value column gives the flow rate in bytes per

second for each respective detected elephant flow,

and the Threshold Value column has the reference

threshold value above which any flow detected is

recorded as an elephant flow.

For instance, it is obvious from the protocol

number 17 in the third column of Table 1 that

udp_lf0 has been classified as a UDP flow. As

mentioned in subsection 1 of Section IV, this flow

is due to the traffic generated from host H1

(192.168.0.101) destined to host H3

(192.168.101.103). It is visualized when the switch

node S3 (117.17.102.169) is double-clicked in Avior

GUI. Finally this flow has been detected as an

elephant flow because its flow rate value is greater

than the pre-defined threshold value of 100KBps.

Similarly, each elephant flow shown in Table 1 is

classified, detected, and visualized in the same

manner. As mentioned above that the protocol

number for TCP and ICMP are 6 and 1 respectively.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-03 Vol.42 No.03

618

Fig. 10. QoS Module in Floodlight Architecture

Flow Classification Metric Top Key Agent Value(Bps)
Pre-defined

Threshold Value

UDP elephant flows

udp_lf0 17, 192.168.0.101, 192.168.0.103 117.17.102.169 144.23K

100KBps

udp_lf1 17, 192.168.0.104, 192.168.0.103 117.17.102.169 118.49K

udp_lf2 17, 192.168.0.102, 192.168.0.104 117.17.102.169 135.97K

TCP elephant flows

tcp_lf0 6, 192.168.0.101, 192.168.0.103 117.17.102.109 19.20M

tcp_lf1 6, 192.168.0.103, 192.168.0.101 117.17.102.109 379.54K

tcp_lf2 6, 192.168.0.102, 192.168.0.104 117.17.102.109 12.83M

tcp_lf3 6, 192.168.0.104, 192.168.0.102 117.17.102.109 305.07K

ICMP elephant

flows
lf7 1, 192.168.0.101, 192.168.0.103 117.17.102.109 573.88K

Table 1. Detected Elephant Flows with reference to a Threshold Value

Ⅴ. A Software-Defined QoS Module

One of the requirements for end-to end

performance guarantees is provided by SDN

OpenFlow protocol which allows traffic control on

per-flow basis. Common queuing QoS technique

within OVS is utilized to access a software-defined

QoS module
[15,16]. n order to achieve a

software-defined approach to this, rate-limiting paths

have been defined through a given network of N

switches. More precisely, a module named QoS has

been implemented in Floodlight OpenFlow controller

that allows to insert and delete flows, and also

handle QoS policies.

The architecture for Floodlight OpenFlow

controller with an added QoS module to it is shown

in Fig. 10. Its northbound REST API is exploited by

the QoS module that uses REST applications to

manage QoS and apply QoS paths through the

network. As obvious from the name, QoSManager

REST application manages QoS from the command

line, whereas QoSPath REST application uses

Floodlight Circuit Pusher to implement QoS circuit

through the network. When the QoS state is pushed

down the network by means of QoSPath application,

all packets that match certain fields into the

rate-limited queue are enqueued. All packets are

matched against OpenFlow 12-tuple of fields, i.e. IP

and MAC addresses, Ethernet type, protocol,

TCP/UDP ports, and so on. Hence, a flow with the

matched destination and source IP addresses is

forwarded for further actions to the queue that is

pre-defined in the policy. An example of

pseudocode for defining the policies is shown in

Fig. 11.

Fig. 11. Pseudocode for Defining Policies

Ⅵ. Handling (QoS Control) of the
Detected Elephant Flows

The aim of this section is to validate the QoS

module embedded in Floolight OpenFlow controller,

as discussed in Section V. To this purpose, the same

linear bus network topology has been deployed in

Mininet. Mininet uses Linux containers and Open

vSwitch to allow realistic virtual networks of hosts

and switches to be constructed using a virtual

www.dbpia.co.kr

논문 / SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어

619

Fig. 12. Queue-based Classification in OVS

Fig. 13. Bandwidth Allocated to Queue q1

Fig. 14. Elephant Flow Visualized in q1

Fig. 15. Bandwidth Allocated to Queue q2

Fig. 16. Elephant Flow Rate-limited in q2

machine[17]. In order to cope with Mininet Gigabit

links, the pre-defined threshold value for the

detection of elephant flows has been increased to

600KBps (4.8Mbps). Any flow surpassing this value

is recorded as an elephant flow.

For each OVS in the network topology, three

different queues have been set-up. Each port of an

OVS has been assigned the maximum available

bandwidth of 10Gbps, eventually allotting each

queue its own bandwidth according to the QoS

policy. The first queue, q1, has been assigned all the

available bandwidth of 10Gbps. The second queue

q2, and the third queue q3 have been rate-limited to

1Gbps and 2Mbps respectively. Fig. 12 depicts an

incoming flow at OVS, the enqueuing process, and

an outgoing flow. All three queues have been also

illustrated in the figure, each with its own respective

queue number.

Host H2, allotted an IP address 10.0.0.2 has been

configured to act as a TCP server, whereas host H1

having an IP address 10.0.0.1 as a client. Iperf
[18]

has been generated from client destined to server via

queue q1 first. It is obvious from Fig. 13 that the

bandwidth limited to around 1Gbps has been used

by queue q1 for traffic between client and server.

This traffic has been visualized by our proposed

framework as show in Fig. 14. Since it greatly

surpasses the pre-defined threshold value, hence it is

recorded as an elephant flow.

The Iperf traffic between the same client and

server has been also generated through queue q2,

which limits it to around 2Mbps because of the

bandwidth restriction for this queue as obvious from

Fig. 15. The flow visualized by our proposed

framework is below the pre-defined threshold value

as shown in Fig. 16, which means that any elephant

flow routed through queue q2 is not allowed to

surpass the pre-defined threshold value. Thus all

elephant flows subjected to this rate-limited queue

are handled (controlled) in this manner.

Table 2 explains the handling of elephant flow

before and after the application of QoS as shown in

Fig. 14 and Fig. 16 respectively. The tcp_lf0 flow,

before the application of QoS traverses the OVS

switch node (117.17.102.118) with the flow rate of

more than 100MB/second which greatly exceeds the

threshold value of 600KB/second, hence it is

detected as an elephant flow. The same elephant

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-03 Vol.42 No.03

620

Metric Agent Value(Bps)
Threshold

Value

tcp_lf0

(before QoS)
117.17.102.118 138.51M

600KBps
tcp_lf0

(rate-limited)
117.17.102.118 286.27K

Table 2. QoS Handling of Detected Elephant Flows

Fig. 17. Topology for Large-scale SDN Network

Fig. 18. Detection and Visualization of Elephant Flows
in Large-scale SDN

flow is controlled and has a flow rate of

286.27KB/second when forwarded through the QoS

rate-limited queue.

6.1 Impact of Elephant Flows on Network
Performance

Distributed Denial of Service (DDoS) is a major

use case of elephant flows. The intruder uses a

control and command network to command various

systems to send traffic to a specific target with the

aim of overwhelming the target infrastructure and

preventing the legitimate users from accessing the

services offered by the server
[19,20].

A typical DDoS attack consists of traffic levels

that exceed a specific threshold value. As shown in

previous sections, any flow above this threshold

value is detected as an elephant flow. If this

detected elephant flow is not handled properly

(rate-limited), the attack traffic sustains above the

threshold value until the intruder stops sending. On

the other hand, the system can be prevented from

performance degradation if the detected elephant

flow is directed to the rate-limited queue to mitigate

the DDoS traffic.

Ⅶ. Applicability of Proposed Framework to
Large-scale SDN Networks

In this section, we show the validity of our

proposed framework to large-scale SDN networks.

So far, the experiments have been performed on a

small-scale testbed, but in actual scenario, the

datacetners have a huge number of hosts and

network devices. So in order to emulate an actual

large-scale SDN-based network scenario, we created

a tree type network topology which consists of one

thousand hosts has been created in Mininet. The

OVSes in this topology are represented by the root

nodes, whereas hosts by the branch nodes as shown

in Fig. 17.

The generic flow classification capability of our

proposed framework has been already validated in

the previous sections, i.e., any elephant flow

classified as TCP, UDP, or ICMP can be detected

and visualized. For the purpose of validation our

proposed framework to large-scale SDN networks,

UDP traffic has been generated by four random

hosts destined to some random hosts in the

large-sale network topology of Fig. 17. The

threshold value has been set to 100KBps. It is

obvious from Fig. 18 that all four flows have been

detected and classified as UDP elephant flows

www.dbpia.co.kr

논문 / SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어

621

because their flow rate values exceed the

pre-defined threshold value of 100 KBps. As a result

of which, all four UDP elephant flows have been

visualized when the sFlow agent (117.17.102.118) is

double-clicked in the network topology GUI.

Ⅷ. Conclusions

Nowadays, due to the increase in the number of

users in datacenter network, the consumption rate of

the bandwidth has become quite significant. With

this increase in the requirement of bandwidth, even

a short delay in the detection and handling of

elephant flows could result in the overall

performance degradation in the datacenter network.

In order to cope with this, we presented a

framework to classify, detect, and visualize elephant

flows in real-time. We also added the double-click

feature by means of which elephant flows traversing

a switch node in a network topology can be

visualized by simply double clicking that switch

node in Avior GUI. In addition, we handled the

detected elephant flows by presenting a QoS

provisioning approach that is defined and managed

by an SDN OpenFlow controller. We validated this

approach by using rate-limiting QoS classification

technique within an SDN network. Finally, we

showed the applicability of our proposed framework

to a large-scale SDN network.

In the future, we aim to extend this work by

measuring the elephant flow detection error and the

detection delay based on the sFlow sampling rate

defined when configuring sFlow on a network

device.

References

[1] J. S. Marron, Felix Hernandez-Campos, and F.

D. Smith, “Mice and elephants visualization of

internet traffic,” in Compstat, pp. 47-54,

Physica-Verlag HD, 2002.

[2] J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W.

Dai, “SDN based load balancing mechanism

for elephant flow in data center networks,” in

IEEE 2014 Int. Symp. Wirel. Pers. Multimedia

Commun. (WPMC), pp. 486-490, 2014.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat, “Hedera: Dynamic

flow scheduling for data center networks,” in

NSDI, vol. 10, pp. 19-19, San Jose, California,

Apr. 2010.

[4] A. R. Curtis, W. Kim, and P. Yalagandula,

“Mahout: Low-overhead datacenter traffic

management using end-host-based elephant

detection,” in Proc. IEEE INFOCOM, pp.

1629-1637, 2011.

[5] P. Phaal, S. Panchen, and N. McKee, InMon

corporation's sFlow: A method for monitoring

traffic in switched and routed networks, 2001,

Retrieved Nov. 15, 2016, from https://tools.i

etf.org/html/rfc3176

[6] A. Islam, et al., “Robust software-defined

scheme for image sensor network,” J. KICS,

vol. 41, no. 2, pp. 215-221, Feb. 2016.

[7] inMon sFlow-RT, Retrieved Nov. 13, 2016,

from http://www.inmon.com/products/sFlow-R

T.php

[8] Ian F. Akyildiz, et al., “A roadmap for traffic

engineering in SDN-OpenFlow networks,”

Computer Networks, vol. 71, pp. 1-30, 2014.

[9] M. Chiesa, G. Kindler, and M. Schapira,

“Traffic engineering with equal-cost-multipath:

An algorithmic perspective,” in IEEE

INFOCOM 2014-IEEE Conf. Computer

Commun., pp. 1590-1598, 2014.

[10] S. Liu, H. Xu, and Z. Cai, “Low latency

datacenter networking: A short survey,” arXiv

preprint arXiv:1312.3455, 2013.

[11] S. U. Rehman, et al., “Network-wide traffic

visibility in OF@TEIN SDN testbed using

sFlow,” IEEE APNOMS, pp. 1-6, Sept. 2014.

[12] C. Marist, What is Avior? (2012), Retrieved

Nov. 13, 2016, from http://openflow.marist.e

du/avior.html

[13] Floodlight Is an Open SDN Controller (2013),

Retrieved Nov. 22, 2016, from http://ww

w.projectfloodlight.org

[14] P. Ferguson and D. Senie, Network ingress

filtering: Defeating denial of service attacks

which employ IP source address spoofing,

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-03 Vol.42 No.03

622

1997, Retrieved Dec. 02, 2016 from https://w

ww.ietf.org/rfc/rfc2827.txt

[15] S. Tomovic, N. Prasad, and I. Radusinovic,

“SDN control framework for QoS provision-

ing,” IEEE TELFOR, pp. 111-114, 2014.

[16] R. Wallner and R. Cannistra, “An SDN

approach: Quality of service using big switchs

floodlight open-source controller,” in Proc.

Asia-Pacific Advanced Network, vol. 35, pp.

14-19, Jun. 2013.

[17] Mininet (2013, Mar), An Instant Virtual

Network on your Laptop (or other PC),

Retrieved Oct. 25, 2016, from http://www.min

inet.org

[18] Iperf: The TCP/UDP Bandwidth Management

Tool, Retrieved Nov. 18, 2016, from https://ip

erf.fr/

[19] G. Bang, et al., “A protection method using

destination address packet sampling for SYN

flooding attack in SDN,” J. Korea Multimedia

Soc., vol. 18, no. 1, pp. 35-41, Jan. 2015.

[20] J. W. Seo and S. J. Lee, “A study on the

detection of DDoS attack using the IP

Spoofing,” J. Korea Inst. Inf. Secur. and

Cryptol., vol. 25, no. 1, pp. 147-153, Feb.

2015.

아팍 무하마드 (Afaq Muhammad)

He received BS degree in

Electrical Eng. from

University of Eng. and

Technology, Peshawar,

Pakistan, and MS degree in

Electrical Eng. with emphasis

on Telecom from Blekinge

Institute of Technology, Sweden in 2007 and

2010 respectively. Currently, he is pursuing his

PhD degree as a KGSP (Korean Government

Scholarship Program) scholar at Jeju National

University. He has worked as a Research

Associate in the Faculty of Comp. Sci. and Eng.

at GIK institute of Eng. Sciences and Technology,

Pakistan. His research interests are software

defined networking, network function

virtualization, wireless networks, and protocols.

송 왕 철 (Wang-Cheol Song)

He received B.S. degree in

Food Engineering and

Electronics from Yonsei

University, Seoul, Korea in

1986 and 1989, respectively.

And M.S. and PhD in

Electronics studies from

Yonsei University, Seoul, Korea, in 1991 and

1995, respectively. Since 1996 he has been

working at Jeju National University. His research

interests include VANETs and MANETs, Software

Defined Networks, network security, and network

management.

www.dbpia.co.kr

	Real-Time Classification, Visualization, and QoS Control of Elephant Flows in SDN
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Overview of Elephant Flows Detection Systems
	Ⅲ. Framework for the Detection,Classification, and Visualization ofElephant Flows
	Ⅳ. Real-time Classification, Detection, and Visualization of Elephant Flows
	Ⅴ. A Software-Defined QoS Module
	Ⅵ. Handling (QoS Control) of theDetected Elephant Flows
	Ⅶ. Applicability of Proposed Framework to Large-scale SDN Networks
	Ⅷ. Conclusions
	References

