

논문 18-43-04-04

이중 모드 인덱스 변조 기반 직교주파수분할다중화 시스템의 설계와 최대전력 대 평균전력 비율 성능 개선

이 준 구', 유 흥 균

Design of Dual-Mode Index Modulation-Based OFDM Systems and Performance Improvement of PAPR

Jungu Lee[•], Heung-Gyoon Ryu[°]

요 약

높은 효율의 초고속통신을 위하여 현재 이동통신 방식인 OFDM(Orthogonal Frequency Division Multiplexing) 시스템의 효율 향상이 필요로 여겨진다. 본 논문에서는 OFDM-IM 방식보다 더 개선된 DMIM-OFDM(Dual Mode Index Modulation Orthogonal Frequency Division Multiplexing)을 설계한다. DMIM-OFDM 시스템이란 기존의 OFDM-IM 시스템에서 OOK(On-off Keying)방식을 사용하여 심볼을 매핑하는 것과 달리, 두가지 형태의 성좌도 를 사용하여 모든 부반송파에 심볼을 매핑시켜 더 많은 비트 전송량을 갖는 시스템이다. 두 개의 성좌도 모드는 서로 겹치지 않으며, 수신기에서는 부반송파에 매핑된 심볼의 모드를 판별하여 신호를 복조한다.

Key Words : OFDM, MIMO, SM, OFDM-IM, DMIM-OFDM

ABSTRACT

It is considered necessary to improve the efficiency of the OFDM(Orthogonal Frequency Division Multiplexing) system, which is the current fourth generation mobile communication system, for high efficiency and high-speed communication in the future. In this paper, we design a scheme of DMIM-OFDM (Dual Mode Index Modulation Orthogonal Frequency Division Multiplexing) which is more advanced than OFDM-IM. The DMIM-OFDM system maps a symbol to all subcarriers using two types of constellation maps, which is different from a symbol mapping using an on-off keying (OOK) scheme in an OFDM-IM system. The two constellation modes do not overlap each other, and the receiver demodulates the signal by discriminating the mode of the symbol mapped to the subcarrier.

I.서 론

현재 이동통신 방식의 일종으로 사용되고 있는 OFDM 시스템은 다중반송파를 사용하여 고속전송을 가능하게 한다¹¹. 또한, 다중반송파를 사용하는 전송 은 광대역 디지털 통신에 중요한 기술로 사용되며 이 는 주파수 선택적 페이딩 채널에서 강한 특성을 보인 다. 하지만 주파수 대역폭은 한정된 자원이기 때문에 제한된 대역폭 내에서의 가장 높은 효율을 낼 수 있도 록 스펙트럼 효율을 향상시키는 연구가 많이 진행되 어진다. 이는 다가오는 5세대 통신과 그 다음의 고속 통신세대의 기술을 연구하며, 지금보다 더욱 더 고속

www.dbpia.co.kr

[※] 이 논문은 2016년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2016R1D1A1B01008046)

First Author : Department of Electronic Engineering, Chungbuk National University, leejg1992@gmail.com, 학생회원
 Corresponding Author : Department of Electronic Engineering, Chungbuk National University, ecomm@cbu.ac.kr, 정회원

논문번호 : KICS2017-12-383, Received December 13, 2017; Revised March 13, 2018; Accepted March 22, 2018

2.1 OFDM-IM의 시스템 모델

먼저 그림 1을 살펴보면, OFDM-IM에서 OOK 방 식을 사용하여 비트를 처리하는 방식을 나타낸다. 일 련의 비트들은 QAM으로 심볼을 형성할 비트와 부반

Ⅱ. 시스템 모델

MIMO 시스템을 구현하였을 때, 발생할 수 있는 채널 간 간섭 및 안테나의 동기화 간섭을 피하기 위해 SM(Spatial Modulation) 방식이 사용된다. SM 방식 은 정보 비트들에 의해 송신 안테나에서 오직 하나의 안테나만이 활성화되고, 나머지 안테나는 0의 전력으 로 보내지는 것이다. 또한, 수신단에서는 알고리즘을 통해 활성화된 안테나를 찾고 이를 통해, 인덱스 비트 를 찾는다. 이러한 방법을 통해 시스템의 전체적인 스 · 페트럼 효율을 높일 수 있는 방법으로 사용된다^[3]. 따 라서 이러한 방법을 OFDM의 반송파에 적용한 기술 •] OFDM-IM(Orthogonal Frequency Division Multiplexing-Index Modulation)이다. OFDM-IM은 SM방식의 인덱스 비트에 의해 송신 안테나가 활성화 되어 전송되는 방법을 부반송파에 적용한 것이다. 입 력되는 일련의 비트들은 심볼을 형성할 비트와 활성 화되는 부반송파 배치에 사용될 인덱스 비트로 나뉘 어지고, OOK(on-off keying) 방식을 사용하여 배치된 부반송파에 활성화되는 부반송파에만 심볼을 매핑한 다. 따라서 송신단에서는 활성화된 부반송파에 심볼이 매핑되어져 inverse fast Fourier transform(IFFT)연산 을 거쳐 송신신호가 만들어진다. 수신단에서는 활성화 된 부반송파에서 심볼을 받고, 부반송파의 배치를 찾 아 인덱스 비트를 찾아낼 수 있다. 따라서 인덱스 비 트가 실질적으로 보내지지 않더라도 부반송파의 배치 에서 인덱스 비트를 검출할 수 있기 때문에 보내는 정 보량이 많아져 이는 결국 스펙트럼 효율 향상을 이룰 수 있다. 이와 같이 기존의 OFDM과 OFDM-IM은 한 프레임을 구성하는 정보 비트 수에서 차이를 보인다.

의 통신을 가능하게하며 전력 및 스펙트럼의 효율을

극대화시키는 기술이 요구된다. 따라서 본 논문에서는

현 4세대 통신의 OFDM 방식과 같이 다중반송파를

사용하는 시스템의 고속전송특성을 가지며 전력효율

측면에서 PAPR문제 등을 개선하여 전력이 중요시 되

는 시스템에 적합한 통신 방식을 설계한다. 일반적으

로 MIMO(Multiple-input and multiple-output) 시스 템은 여러 개의 송신 안테나와 수신 안테나를 사용하

여, 사용된 안테나수에 비례하여 무선 통신의 용량을 높이는 기술이다^[2]. 다수의 송수신 안테나를 사용하여

Fig. 1. Bit processing of OFDM-IM 송파의 배치에 이용될 인덱스 비트로 나누어진다. 따 라서 OOK 방식에 사용될 비트들에 의해 활성화되는 부반송파와 비활성화되는 부반송파가 나뉜다. 심볼을 형성한 비트는 부반송파 배치 변조기에 의해 활성화 된 부반송파에 심볼이 매핑되고 나머지는 비활성화 상태가 되어 부반송파가 사용되지 않는다. 따라서 기 존의 OFDM 시스템과는 달리 사용하는 부반송파의 조합의 개수에 따라 인덱스 비트를 보낼 수 있고, 더 많은 비트 전송량을 갖게 된다. 송신 단에서는 별도의 비트 전송이 없이 수신 단에서 부반송파의 배치에 따 라 인덱스 비트를 알 수 있으므로 이는 부반송파의 사 용 개수를 줄여 전력을 줄일 수 있고, 기존의 OFDM 보다 OOK에 사용되는 비트를 보내어 더 많은 전송량

을 갖기 때문에 스펙트럼 효율을 향상시킬 수 있다^[4].

DMIM-OFDM은 OFDM-IM의 확장된 시스템이

다. OFDM-IM에서의 OOK방식을 사용하여 활성화되

는 부반송파에만 심볼을 매평한 반면, DMIM-OFDM

에서는 활성화되지 않은 나머지 부반송파에도 심볼을

매핑한다. 그림 2는 DMIM-OFDM의 비트 처리 과정

DM

Modulator

2.2 DMIM-OFDM의 시스템 모델

Bits(index)

1 1 0 .. 1

그림 2. DMIM-OFDM의 비트 처리 과정

Fig. 2. Bit processing of DMIM-OFDM

2.2.1 시스템 모델

Bits(QAM)

1 1

DMIM-OFDM Block of Bits

1 1 0 0 1 0

Bits(OOK)

1 1 0 .

Subcarrier

index

modulator

active

active inactive

:

QAM.

Bits(QAM)

1 1 0 0 1 0 .. 1 1

active

:

DMIM-OFDM Frame

active

을 나타낸다. 기존의 OFDM-IM의 경우에는 인덱스 비트가 1인 경우에만 활성화시켜 심볼을 부반송파에 매평한 반면에, DMIM-OFDM은 OOK 방식을 사용 하지 않고 인덱스 비트가 0인 경우에도 다른 성좌도 를 이용하여 심볼을 부반송파에 매평한다. 여기서 모 드A와 모드B는 같은 성좌도 배치가 아닌 서로 겹치 지 않는 성좌도를 사용하여 심볼을 구성한다. 따라서 OFDM-IM보다 더 많은 비트 전송량을 보낼 수 있다 ^[5].

그림 3과 4는 시스템 변조에 사용되는 성좌도의 모 습을 나타낸 그림이다. 그림에서 볼 수 있듯이, QPSK 와 16OAM의 형태로 구성된 하나의 모드와 겹치지 않는 다른 형태의 OPSK, 16OAM의 성좌도가 전체적 인 시스템의 성좌도를 이룬다^[5]. OFDM-IM과는 달리 DMIM-OFDM에서는 모든 부반송파에 심볼이 매핑 되는데, 수신 단에서 부반송파의 배치를 알 수 있도록 성좌도의 배치를 달리한 두가지 모드의 성좌도를 사 용한다. 참고문헌[5]에서는 QPSK 변조방식과 겹치지 않도록 다른 하나의 모드를 성좌도를 사용하고, 16QAM 성좌도와 겹치지 않는 모드의 성좌도를 만들 어 사용하였다^[5]. 따라서 서로 다른 성좌도 배치를 가 진 심볼을 토대로 수신 단에서는 부반송파의 배치를 알아낼 수 있다. 그림에서 보다시피 모드A와 모드B의 성좌도는 한 심볼을 이루는 비트의 수는 동일하다. 하 지만 두가지의 성좌도가 서로 겹치지 않도록 차이를 주어 수신 받은 신호의 부반송파 배치를 해석하는데 도움을 준다.

그림 5는 DMIM-OFDM의 송신기 구조를 나타내는 그림이다. 보내고자하는 정보 m비트들이 한 그룹당 p 개의 비트들로 이루어진 t개의 그룹으로 나누어진다.

그림 3. 두 가지 모드의 QPSK 성좌도 Fig. 3. Two modes of QPSK constellation

그림 4. 두 가지 모드의 16QAM 성좌도 Fig. 4. Two modes of 16QAM constellation

그림 5. DMIM-OFDM 시스템 송신기의 블록 다이어그램 Fig. 5. Block diagram of DMIM-OFDM transmitter

$$t = m/p \tag{1}$$

또한, p비트는 다시 부반송파 배치에 사용될 인덱 스 비트 p_1 과 심볼을 형성 할 비트 p_2 로 나누어진다.

$$p = p_1 + p_2 \tag{2}$$

이렇게 모드A와 모드B로 심볼이 매핑된 부반송파 들을 통해 OFDM 연산의 한 프레임은 서브블록 단위 로 구성되어진다. 따라서 한 서브블록당의 길이는 FFT연산의 사이즈인 N을 사용해 다음과 같이 정해지 고, 이를 통해 부반송파의 배치가 서브블록에서 이루 어진다.

$$l = N/t \tag{3}$$

만약 k개의 부반송파가 모드A의 성좌도 배치를 통 한 심볼이 매핑된다면, (l-k)개의 부반송파가 모드B 의 성좌도 배치를 이용한 심볼이 매핑된다. 여기서 p_1 과 p_2 의 값을 조합의 방법을 통해 정할 수 있다. $p_1 = \lfloor \log_2(l!/(l-k)!k!) \rfloor \tag{4}$

$$p_2 = k \times \log_2(A) + (l-k) \times \log_2(B)$$
 (5)

 p₁의 식에서 []
 ○ 정수형 플로어 연산자이고,

 p₂의 식에서 A와 B는 각각 모드A와 모드B의 성좌

 도를 이루는 비트의 수를 지칭한다^[5].

표 1은 본 논문에서 DMIM-OFDM 시스템을 구현 하는데 사용된 인덱스 비트에 따른 부반송파의 배치 를 나타내는 표이다. 인덱스 비트 p_1 에 따라서 모드A 의 심볼이 몇 번째의 부반송파에 매핑이 되고 나머지 부반송파에 모드B의 심볼이 매핑된다. 따라서 이렇게 모드A와 모드B로 매핑된 각 부반송파들은 하나의 서 브블럭 단위로 이루어져 IFFT 연산을 거쳐 송신신호 가 만들어진다.

표 1. 부반송파 배치를 나타내는 룩업테이블 Table 1. Look-up table indicating subcarrier index

Index bits	Indices(Mode A subcarriers)	Subblocks
[0, 0]	[1, 2]	[A, A, B, B]
[0, 1]	[1, 3]	[A, B, A, B]
[1, 0]	[1, 4]	[A, B, B, A]
[1, 1]	[2, 3]	[B, A, A, B]

2.2.2 설계하는 시스템 모델

다음은 본 논문에서 설계하고자 하는 시스템 모델 이다. 참고문헌 [5]에서의 성좌도 모습은 두 가지 모 드의 성좌도 형태는 평균전력의 크기를 다르게하여 수신신호의 복조가 편리하도록 구성하였다. 하지만, 이는 증폭기 전력의 손실 및 PAPR의 단점이 발생한 다. 따라서 그림 6은 QPSK와 pi/4 QPSK 형태로 구

그님 0. DMIM-OFDM 시스템에 사용되는 QPSK와 pi/4 QPSK 두가지 모드의 성좌도

Fig. 6. QPSK and pi/4 QPSK two modes constellation used in DMIM-OFDM system

성되어있지만, 두 모드의 평균전력은 같다. 따라서 두 가지 모드가 합쳐지면, 일정한 크기를 갖는 동심원상 에 두 가지 모드의 심볼들이 매핑된다. 또한, 그림 7의 경우는 참고문헌 [5]와는 달리 원형 형태의 16PSK와 16APSK의 성좌도 형태로 구성하였다. 이와 마찬가지 로 각 모드의 평균전력을 동일하게 하여, 전력효율문 제를 해결할 수 있다.

그림 8은 DMIM-OFDM 시스템의 수신기를 블록 다이어그램으로 나타낸 그림이다. 채널을 통과한 송신 신호는 기존의 OFDM과 같이 CP를 제거하고 병렬구 조로 변환되어 FFT 연산된다. 그 다음 Log-Likelihood Ratio(LLR) 알고리즘 연산을 통해 부 반송파의 배치를 찾아낼 수 있다^[6].

$$\gamma_n = \ln \left(\frac{\sum_{j=1}^{A} \Pr\left(X_n = A(j) | Y_n\right)}{\sum_{q=1}^{B} \Pr\left(X_n = B(q) | Y_n\right)} \right)$$
(6)

수신기에서 FFT 연산을 거친 Y_n 은 각각의 부반송 파가 모드A 또는 모드B에 의해 변조되기 때문에, 각 부반송파의 성좌도 배치는 식 13을 통해 확률의 대수

그림 7. DMIM-OFDM 시스템에 사용되는 16PSK와 16APSK 두가지 모드의 성좌도

Fig. 7. 16PSK and 16APSK two modes constellation used in DMIM-OFDM system

www.dbpia.co.kr

를 계산함으로써 획득할 수 있다. 여기서 $1 \le n \le N$ 이고, N_A 와 N_B 는 각각 모드A와 모드 B의 성좌도를 구성하는데 필요한 비트의 수이다. 또 한, $A(j) \in N_A$, $B(q) \in N_B$ 이다. 위 식을 통해 구 한 γ_n 이 양수라면, n번째 부반송파는 모드A에 의해 변조된 것이고, γ_n 이 음수라면, n번째 부반송파는 모 드B에 의해 변조된 것이다. 위의 식 13을 베이즈 정리 를 이용해 다음과 같이 표현 할 수 있다^[5].

$$\begin{split} \gamma_{n} &= \ln \left(\frac{N_{B}k}{N_{A}(l-k)} \right) \\ &+ \ln \left(\sum_{j=1}^{N_{A}} \exp \left(-\frac{1}{N_{0}} |Y_{n} - H_{n}A(j)|^{2} \right) \right) \\ &- \ln \left(\sum_{q=1}^{N_{B}} \exp \left(-\frac{1}{N_{0}} |Y_{n} - H_{n}B(q)|^{2} \right) \right) \end{split} \tag{7}$$

여기서 N_0 는 노이즈 레벨,을 H_n 은 주파수축 채널 전달함수의 상수를 뜻한다. 따라서 위 식을 통해 계산 된 γ_n 은 부호함수를 사용하여 나타낸 후 다음의 표를 이용해 부반송파의 배치를 찾아내어 이를 통해 인택 스 비트를 알 수 있다^[5].

LLR 알고리즘 계산을 통해 나온 γ_n 은 부호함수를 이용하여 1과 - 1로 표현이 되고, 이를 통해 n번째 부반송파가 모드A로 변조가 되었는지, 모드B로 변조 가 되었는지를 확인할 수 있다. 따라서 이를 통해 서 브블럭에 일련의 인덱스 비트를 추가하고 각각 모드A 와 모드B로 복조를 하게 되면 원하는 신호를 얻는다.

표 2. LLR 알고리즘 계산을 통해 부반송파의 배치를 나타내 는 록업테이블

$\operatorname{sgn}(\gamma_n)$	Indices(Mode A subcarriers)	Subblocks with index bits
[1, 1, -1, -1]	[1, 2]	$[0, 0, \hat{A}, \hat{A}, \hat{B}, \hat{B}]$
[1, -1, 1, -1]	[1, 3]	$[0, 1, \hat{A}, \hat{B}, \hat{A}, \hat{B}]$
[1, -1, -1, 1]	[1, 4]	$[1, 0, \hat{A}, \hat{B}, \hat{B}, \hat{A}]$
[-1, 1, 1, -1]	[2, 3]	$[1, 1, \hat{B}, \hat{A}, \hat{A}, \hat{B}]$

는 국업데이들 Table 2. Look-up table indicating subcarrier index through the LLR algorithm calcluation

Ⅲ. 시뮬레이션 결과 및 분석

본 논문에서는 설계하고 있는 DMIM-OFDM 시스 템을 MATLAB 프로그램을 사용하여 시스템 모델의

Ŧ	3.	시뮬	레이션	환경	
Та	ble	3.	Simula	ation	parameters

4010	0.	Simulation	purumeten	,

Modulation	QPSK + pi/4 QPSK, 16PSK+16APSK	
FFT size	128	
Number of subcarrier per subblock	4	
Number of subblock	32	
CP length	16	
Channel	AWGN channel	

변조방식을 달리하여 성능을 분석하고 확인하기 위한 시뮬레이션을 진행하였다.

표 3과 같은 환경으로 시뮬레이션을 진행하였다.

그림 9와 10은 QPSK 변조를 사용한 DMIM-OFDM과 16APSK를 사용하여 DMIM-OFDM 시스템을 구현하였을 때의 BER성능 이다. 각각 10⁻⁴의 BER 성능을 기준으로 QPSK 변 조를 사용한 시스템의 경우에는 13.3dB, 16APSK 변 조를 사용한 시스템의 경우에는 17dB의 SNR 값을 나타내었다.

그림 11과 12는 참고문헌 [5]의 시스템과 성좌도형 태를 달리한 DMIM-OFDM 시스템과의 PAPR 성능 을 비교한 것이다. 그림 11은 평균전력을 같게 하여 일정한 크기의 동심원상에 각각의 심볼을 배치한 DMIM-OFDM 시스템이 참고문헌 [5]의 시스템보다 좋은 성능을 낸다. 또한, 그림 12에서도 사각형 형태 의 16QAM 성좌도를 사용한 참고문헌 [5]보다 원형 의 성좌도 형태인 16PSK와 16APSK를 사용한

그림 9. QPSK 변조를 사용한 참고문헌 [5]와 QPSK와 pi/4 QPSK 변조를 사용한 DMIM-OFDM 시스템의 BER 성능 비 교

Fig. 9. BER performance comparison of reference [5] using QPSK modulation and DMIM-OFDM system using QPSK and pi/4 QPSK modulation

그림 10.16QAM 변조를 사용한 참고문헌 [5]와 16PSK와 16APSK 변조를 사용한 DMIM-OFDM 시스템의 BER 성능 비교

Fig. 10. BER performance comparison of reference [5] using 16QAM modulation and DMIM-OFDM system using 16PSK and 16APSK modulation

그림 11. 참고문헌 [5]와 DMIM-OFDM 시스템의 QPSK 변조를 사용했을 때의 PAPR 비교 Fig. 11. PAPR comparison of reference [5] and

DMIM-OFDM system using QPSK modulation

그림 12. 참고문헌 [5]와 DMIM-OFDM 시스템의 16QAM 변조를 사용했을 때의 PAPR 비교 Fig. 12. PAPR comparison of reference [5] and DMIM-OFDM system using 16QAM modulation

DMIM-OFDM 시스템이 더 낮은 PAPR 성능을 낸다. 이를 통해 전력효율성이 중요시되는 위성 통신 등에 서 증폭기의 전력효율을 높일 수 있고, PAPR 성능을 개선시킬 수 있다.

DMIM-OFDM 시스템이 QPSK 또는 pi/4 QPSK 변조를 사용했을 때와 16PSK 또는 16APSK 변조를 사용하였을 때의 한 서브블럭을 구성하는 비트의 수 를 나타내는 그림이다. 본 논문에서는 사이즈 128 FFT를 사용하였고, 정보비트들은 32개의 그룹으로 나 누어졌다. 따라서 각 그룹당 길이 l = 4이고, 모드A 와 모드B의 성좌도를 사용한 심볼이 매핑되는 부반송 파의 개수는 각각 2개이다. CP의 길이 L = 16이다. 따라서 부반송파 4개를 사용할 때의 OFDM 시스템과 DMIM-OFDM 시스템의 스펙트럼 효율을 비교할 수 있다.

다음은, 식 (3), (4), (5)를 통해 DMIM-OFDM 시 스템의 스펙트럼 효율을 계산하는 식이다.

$$E = \frac{t(p_1 + p_2)}{N + L}$$
(8)

여기서 L은 Cyclic prefix(CP)의 길이이다.

따라서 이를 통해 본 논문에서 사용된 QPSK와 pi/4 QPSK 변조를 사용하여 시스템을 구현했을 때와 16PSK와 16APSK를 사용하여 시스템을 구현하였을 때의 스펙트럼 효율을 각각 구해보면 다음과 같다. 첫 번째로 QPSK와 pi/4 QPSK 변조를 사용하여 시스템 을 구현하였을 때의 스펙트럼 효율 *E*는

$$p_1 = \lfloor \log_2(4!/(4-2)!2!) \rfloor = 2$$
(9)

$$p_2 = 2 \times \log_2(4) + (4-2) \times \log_2(4) = 8$$
 (10)

$$E = \frac{32 \times (2+8)}{128+16} = 2.22 \, bits/s/Hz \tag{11}$$

마찬가지로 16PSK와 16APSK 변조를 사용해 구 한 DMIM-OFDM의 스펙트럼 효율 *E*는

$$p_1 = \lfloor \log_2(4!/(4-2)!2!) \rfloor = 2$$
(12)

$$p_2 = 2 \times \log_2(16) + (4-2) \times \log_2(16) = 16$$
 (13)

$$E = \frac{32 \times (2+16)}{128+16} = 4 \, bits/s/Hz \tag{14}$$

653

www.dbpia.co.kr

로 계산되어 짐을 알 수 있다.

Ⅳ. 결 론

본 논문에서는 현 4세대 이동통신 방식으로 사용되 고 있는 OFDM 시스템의 스펙트럼 효율을 개선하는 시스템이 요구되므로, 그에 맞는 OFDM 시스템의 스 펙트럼 효율 개선을 목적으로 시스템을 설계하였다. 기존의 OFDM 시스템에 비해서 OFDM-IM의 경우에 는 부반송파의 조합에 따라 보내지는 정보량이 늘어 나기 때문에 이를 통해 스펙트럼 효율을 QPSK 변조 와 pi/4 QPSK 변조를 사용했을 때와 16PSK와 16APSK 변조를 사용했을 때 각각 25%와 12.5% 향상시키는 결과를 얻었다. 전력효율성이 중요시되는 시스템에서의 전력효율성을 증가시키기 위하여 평균 전력이 동일한 QPSK와 pi/4 QPSK, 16PSK와 16APSK 변조를 사용함으로써 증폭기에서 발생할 수 있는 전력문제와 PAPR의 문제점등을 개선한다. 또한, 본 논문에서의 DMIM-OFDM은 OOK 방식이 아닌 비 활성화된 부반송파에도 겹치지 않는 성좌도 배치 를 사용해 심볼을 매핑하기 때문에 기존의 OFDM-IM 보다 많은 양의 정보를 보낼 수 있다. DMIM-OFDM 시스템에서의 LLR 알고리즘을 통해 수신기에서의 연 산량을 줄여주며 이에 따라 시스템의 복잡도가 줄어 드는 특성이 있다. 따라서 DMIM-OFDM은 기존의 시스템과는 다른 방식의 심볼 매핑과 연산 처리 방법 등이 달라지며, 이는 전력 효율 문제를 개선하는 시스 템으로 활용할 수 있다.

References

- T. Hwang, et al., "OFDM and its wireless applications: a survey," *IEEE Trans. Veh. Technol.*, vol. 58, no. 4, pp. 1673-1694, May 2009.
- [2] M. Di Renzo, et al., "Spatial modulation for generalized MIMO: challenges, opportunities, and implementation," in *Proc. IEEE*, vol. 102, no. 1, pp. 56-103, 2014.
- [3] R. Y. Mesleh, et al., "Spatial modulation," *IEEE Trans. Veh. Technol.*, vol. 57, no. 4, pp. 2228-2241, 2008.
- [4] R. Abu-Alhiga and H. Haas, "Subcarrier-index modulation OFDM," in 2009 IEEE 20th Int. Symp. Pers., Indoor and Mob. Radio Commun.

(*PIMRC 2009*), pp. 177-181, Tokyo, Japan, Sept. 2009.

- [5] T. Mao, et al., "Dual-Mode index modulation aided OFDM," *IEEE Access* 5, pp. 50-60, 2017.
- [6] R. Fan, "Investigation on orthogonal frequency division multiplexing with index modulation, Thesis", Dept. School of Electrical and Electronic Eng., Nanyang Technological Univ., 2016.

이 준 구 (Jungu Lee)

2017년 2월 : 충북대학교 전자 공학과(공학사) 2017년 3월~현재 : 충북대학교 전자 공학과 석사과정 <관심분야> 무선통신시스템, 차세대 통신시스템

유 흥 균 (Heung-Gyoon Ryu)

1988년 2월~현재 : 충북대학교 전자공학과 교수 2002년 3월~2004년 2월 : 충북 대학교 컴퓨터정보통신연구 소 소장 <관심분야> 무선통신, 5G/B5G 이동통신, 위성통신, 통신회 로 설계 및 통신처리