
NFV에서 동  Service Function Chain 업데이트를 한 

메커니즘

응웬쫑당 , 유 명 식°

Mechanism for Dynamically Updating

Service Function Chains in NFV

Trinh Nguyen , Myungsik Yoo
°

요   약

네트워크 트랙픽 복잡성 증가와 SFC (Service Function Chaining)이 설계된 방식은 DoS 공격과 같이 비정상 

상황이 발생할 경우 재 진행되는 SFC를 재 설정하는 것을 어렵게 만들었다. 네트워크 리자는 성능 하된 

SFC를 수동 으로 새로운 트래픽 분류자를 통하여 새로운 가상 서비스 셋을 정의하고, 기존의 SFC를 제거하고, 

마지막으로 새로운 SFC를 생성하게 된다. 이러한 과정은 긴 단  시간으로 인하여 사용자들의 불만을 래한다. 

본 논문에서는 연속  모니터링을 통하여 동 인 SFC 업데이트가 가능한 방법을 제안하는데, 제안 방식으로 인하

여 단  시간 단축  결함 리를 용이하게 할 수 있다. 사용사례 구 을 통하여 제안 방식의 타당성을 검증하

다.

Key Words : Network Function Virtualization, Continuous Monitoring, Service Function Chaining, 

Self-healing, Dynamic Update

ABSTRACT

The increasing complexity of the network traffic and the way service function chains (SFC) were architect 

make it difficult to readjust an on-going SFC when unusual events occur such as traffic overhead or 

Denial-of-Service (DoS). Normally, network administrators have to modify the degraded SFC manually by 

defining a new set of virtual services with new traffic classifiers, then deactivating the current set of virtual 

services and finally activate the new set. That process often causes dissatisfaction from customers because of 

prolonged downtime. This paper proposes a novel mechanism that supports dynamic update of SFC(s) using a 

continuous monitoring technique based on predefined policies which will help reduce the chance of disconnection 

and improve the effectiveness of fault management. An use case is also discussed to show the feasibility of 

proposed mechanism.

논문 18-43-09-09 The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09
https://doi.org/10.7840/kics.2018.43.9.1476

1476

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology 

Research Center) support program (IITP-2018-2017-0-01633) supervised by the IITP(Institute for Information & communications 

Technology Promotion).

First Author : (ORCID:0000-0001-6885-5935)Department of ICMC Convergence Technology, Soongsil University, Seoul, Republic 

of Korea, dangtrinhnt@soongsil.ac.kr, 학생회원

° Corresponding Author : (ORCID:0000-0002-5578-6931)School of Electronic Engineering, Soongsil University, Seoul, Republic of 

Korea, myoo@ssu.ac.kr, 정회원

논문번호：201809-274-D-RN, Received September 6, 2018; Revised September 15, 2018; Accepted September 17, 2018

www.dbpia.co.kr



논문 / NFV에서 동  Service Function Chain 업데이트를 한 메커니즘

1477

Ⅰ. Introduction

Network Function Virtualization (NFV) 

introduces a new way to architect, instantiate and 

administrate networking services. NFV separates 

network functions, some of which are firewalls, 

proxy cache, and domain name service etc. from 

proprietary hardwares so they can run in software. It 

is created to unify and supply the networking 

elements needed to support a comprehensively 

virtualized infrastructure including virtual storages, 

servers, and or multiple networks. NFV virtualizes 

network functions by making use of standard 

virtualization technologies that run on high volume 

servers and switches. Similar to traditional 

networking, NFV provides end-to-end services by 

defining ordered lists of network functions except 

NFV uses software-defined components to perform 

the networking features instead of relying on 

middleboxes. These Virtual Network Functions 

(VNFs) are then virtually attached together in the 

network to create one or more service chains. In 

addition, classifiers are added to SFC as a mean to 

match traffic flows against the rule for subsequent 

application of the specified set of network service 

functions
[3]. Those traffic classifiers and VNF 

ordering constraints add complexity to the designing 

SFC part of Network Service (NS) deployment 

process in NFV based networks. 

State-of-the-art deployment strategies for NS are 

often closely linked to physical infrastructure and 

network topology, consequently leading to 

comparatively strict and fixed deployments. The 

static nature of such deploying plans largely shortens 

and tightens the ability of operators to introduce 

new or modify existing services. Besides that, 

readjusting elements of an SFC usually impacts 

other units in the chain and or the network elements 

used to build the chain. This drawback is 

specifically critical in elastic service environments 

that need comparatively speedy creation, deletion, or 

changing of VNF or network components. 

Moreover, the conversion to virtual infrastructure 

needs a quick service modification model that 

supports elastic and grainy NS provision, and the 

migration of VNF and application workloads in the 

existing network. Therefore, It is necessary to 

develop SFC dynamic update methodologies to align 

with ETSI' NFV resiliency requirements
[2].

Although dynamic SFC has been discussed 

oftentimes in literature, there is still missing of such 

simple and cost effective modification techniques for 

SFC in NFV environment. Most of the existing 

solutions embeds dynamic SFC functionalities into 

NFV which will not only increase workload of the 

system itself while dealing with extra computational 

tasks, but also encounters challenges to add new 

features because of the inflexible nature of such 

embedded softwares. Liu et al.
[6] tried to optimize 

the readjusting on-going users' SFC process by 

acquiring an integer linear programming model 

along with a column generation model. That method 

consumes an amount of computing resource and 

may add latency to services provisioning. Zave et 

al.
[9] developed Dysco, a session protocol that 

dynamically reconfigures on-going SFC sessions. 

Despite Dysco does not require any changes to 

end-host and VNF applications, it only supports 

TCP-based services
[4], including but not limited to 

load-balancer, proxy caching etc. Hence, Domain 

Name Service (DNS), Dynamic Host Configuration 

Protocol (DHCP) or other UDP-based VNF 

applications
[5] are left unsupported. Cunha et al.[10] 

achieved dynamic SFC using a Policy Enforcer and 

Application Programming Interface (API) to 

reconfigure VNFs. Owing to relying on a set of 

VNFs including a Deep Packet Inspection (DPI), a 

Content Filter (CF), a Firewall (FW), a Traffic 

Shaper (TShap), and a Traffic Accounter (TAcc) to 

provide SFC functionalities, that approach creates a 

dependency problem for other VNFs. Mechtri et 

al.
[7], different from two previous papers, took a 

broader view when trying to design a new NFV 

orchestration framework that focuses on tackling 

some of the SFC challenges. One of the issues that 

framework attempts to solve is supporting SFC in 

NS descriptors by extending the TOSCA data 

model. However, new release of TOSCA will break 

its current implementation.

On the contrary to those before-mentioned works, 

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09

1478

Fig. 1. High level work flow of the proposed system

this paper takes a more feasible approach to the 

dynamic SFC readjustment problem that is 

continuously monitor system components using 

external client-server based monitoring service plus 

predefined backup or remedy policies based on 

existing knowledge of events that may occur. As a 

result of leaving the NFV Orchestrator (NFVO) 

untouched, the proposed system introduces 

plug-and-play and extensible capabilities. That 

mechanism will be explained thoroughly in Section 

II of this paper. Additionally, a specific use case is 

explored in Section III. Finally, the concluding 

remarks and future works are provided in Section 

IV.

Ⅱ. Dynamic Update Mechanism df 
Service Function Chains

At a high level point of view, the designed 

system achieves dynamic update of SFC capability 

by leveraging a continuous monitoring technique 

that is periodically gathering metric-based 

information, e.g. CPU, workload, memory etc. sent 

from monitored targets such as VNF(s), the NFVO 

and so on. With each piece of information collected, 

monitoring server then matches with the predefined 

policies to see whether a certain service request is 

normal or abnormal (a DoS attack, or some VNF(s) 

down and replacement etc.). When a traffic 

behavior-policy match is found, the monitoring 

server will trigger a backup or remedy action for 

that particular SFC. The actions are also planned 

before hand by network administrators based on 

knowledge of incidents. Some example actions are 

deploying a new traffic classifier that blocks the 

Internet Control Message Protocol (ICMP) when 

high load detected, or replacing a web VNF that is 

down. High level work flow of the proposed 

mechanism can be seen in Figure 1.

Instead of hard-coding into NFV for realizing the 

dynamic updating SFC features which requires lots 

of development effort and platform specific oriented, 

the proposed system takes advantages of existing 

solutions that is client-server based monitoring 

software and just focuses on the actual 

functionalities it desired. Thus, monitoring features 

and trigger logics are decoupled from the NFV 

Management and Orchestration (NFV MANO) that 

leaves rooms for further extensions and future 

maintenance processes. Additionally, the current 

monitoring features of well-known NFV MANO 

implementations, e.g. Tacker, can only handle a 

limited number of system properties for instance, 

Ceilometer only supports hardware infrastructure 

resource-related parameters (e.g. CPU or memory 

usage). Other drivers like ping or http_ping support 

basic checking for VNFs reachability. Therefore, to 

guarantee the availability and stability of network 

services provided by VNFs, a more sophisticated 

monitoring tool is required. By using an external 

tool that has the capability to monitor many aspects 

of a NFV system, the challenge of dynamically 

modifying the SFCs becomes solvable.

Figure 2 describes the main architecture of 

designed mechanism to readjust SFC dynamically. 

By employing a client-server scheme, the proposed 

system requires to install agent software in each of 

the VNFs and the NFV MANO itself. Monitoring 

agents for VNFs will be deployed at the time of 

VNF instantiation. The agents installed inside VNFs 

only take care of the VNFs while at NFV MANO 

level, agents will be assigned manually by network 

administrators and handle the SFC modification. 

Those agents then extract critical information of 

www.dbpia.co.kr



논문 / NFV에서 동  Service Function Chain 업데이트를 한 메커니즘

1479

Fig. 2. Dynamic update for SFC architecture

monitored targets and send to the monitoring server. 

Critical information including CPU utilization, 

memory usage of the VNFs, packets that go through 

the system and so on will be filtered by the server 

based on predefined policies. There are rules that 

matches traffic behavior and status of monitored 

targets with known faults that may lead to failures. 

If a match is found, a trigger will be executed to 

produce some actions that try to recover the 

degraded SFC. Examples of policies are monitoring 

server will trigger the SFC readjustment procedure 

that adds new traffic classifier to drop ICMP 

packages when the number of ICMP packages 

coming through is too high (e.g. greater than 2000 

bytes per second), or the server will trigger the SFC 

update to replace an unresponsive web VNF. This 

policy-driven nature along with extensible 

characteristic of the proposed mechanism help the 

NFV system accomplish the desired dynamic SFC 

readjustment.

Ⅲ. Experiment

The experiment introduces a specific use case in 

which open source software solutions including 

OpenStack cloud platform and Zabbix
[11] monitoring 

server are leveraged to realize the desired dynamic 

SFC update feature. In this experiment we chose to 

monitor the ICMP traffic as it is a basic indicator 

for abnormal activities when the number of the 

ICMP packages is too high. 

Network operators can use other types of traffic 

and parameters such as FTP, SSH requests, or CPU 

usage of the VNFs etc. as monitoring metrics. HTTP 

requests are also used in this experiment to show 

that only the ICMP packages are blocked when the 

monitoring server executes the SFC update 

command to add the ICMP classifier. The 

experimental results are presented to demonstrate 

that the proposed mechanism can be plugged into an 

NFV MANO system with less effort and provides 

dynamic SFC readjustment. Table 1 is the 

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09

1480

Server Details

Devstack 

Server

CPU Intel Xeon E3 1240 3.4 GHz,

4 x 4GB DDR3 1333MHz,

1TB HDD

Ubuntu 16.04 LTS x64

Zabbix 

Server

CPU Intel Core i5 7600 3.5 GHz,

8GB DDR4 2400MT/s,

1TB HDD

Ubuntu 16.04 LTS x64

Table 1. Specifications of the experiment

Fig. 3. Experimental Topology 

specifications of this experiment.

As shown in the experimental topology (Figure 

3), Devstack[12] is used to quickly create an 

OpenStack development environment with Tacker
[16], 

a NFV MANO implementation, and other 

dependency services (e.g. Heat, Networking-SFC, 

Barbican, Mistral, Ceilometer, Aodh etc.). The 

Devstack server has two main virtual networks, one 

for management (net_mgmt) and the other for the 

internal network (net1) that connects the VMs. 

Besides, it is required that the Zabbix server is 

connected to the same network with Devstack' 

external interface to monitor VM instances through 

the floating IP.

Monitoring server is configured through several 

steps. Firstly, we register the OpenStack machine, 

then create a trigger with a name which contains the 

keyword BpS (e.g. BpS in the eth0 is too high), and 

add to that trigger a matching condition where the 

matching expression is anda-os:net.if.in[enth0].avg 

(2)>2000. We then create an action that will update 

the classifier if a trigger with the BpS name will be 

generated by Zabbix server. The action command 

can be found in [13].

After monitoring server has been set up properly, 

Zabbix agent is installed natively in the OpenStack 

server. That client software is used to send data 

back to the monitoring server and execute the 

www.dbpia.co.kr



논문 / NFV에서 동  Service Function Chain 업데이트를 한 메커니즘

1481

Fig. 4. Experimental Work Flow: (a) System under 
normal condition, no traffic classifier, the monitoring server 
was setup to capture high load event with a trigger to 
execute the VNFFG update action. (b) "BpS too high" 
event detected, ICMP traffic classifier added via VNFFG 
update.

VNFFG update command to modify the classifier of 

the chain. Thereafter, two Service Functions (SFs) 

via two VNFs are deployed. The first VNF is 

Suricata (IDS) which will be instantiated using this 

VNF Descriptor (VNFD) template
[14]. The second 

one is OpenWrt (firewall) with the same 

configuration as it is described in the Tacker's 

documentations
[15].

Initially, we create a VNFFG with a chain (IDS, 

firewall) and no classifier. We then generate ICMP 

traffic using PING towards the Devstack with a 

floating IP address. When that traffic reaches a 

threshold, a specific event is sent to the Zabbix 

server and Zabbix server tells its client to execute 

the VNFFG update command to add an ICMP 

classifier to the existing VNFFG. That workflow is 

illustrated in Figure 4.

The screen snapshots of the experiment are 

shown in Figure 5 and Figure 6. Figure 5 presents 

the normal state of the system when the number of 

ICMP packages sent to Devstack is less than 2000. 

In this stage of the experiment, there is no traffic 

classifier, both PING and HTTP requests are 

processed successfully. Figure 6 shows the ICMP 

requests are blocked when the number of ICMP 

packages is more than 2000, which is the threshold 

we defined in the Zabbix server's trigger. The 

Zabbix server has updated the VNFFG to add an 

ICMP classifier when the number of ICMP packages 

reaches the threshold. In this stage of the 

experiment, only HTTP requests are passed.

Fig. 5. No traffic classifier: Client VM can ping and 
request HTTP packages from the Target VM

Fig. 6. ICMP blocked: Client VM cannot ping the Target 
VM, only HTTP works

Ⅳ. Conclusion

This article proposes a feasible and extensible 

mechanism for dynamically updating the SFCs. 

Contrarily to other works, this mechanism utilizes an 

external monitoring tool and existing capabilities of 

NFV implementations to update the desired SFCs. 

This approach not only releases the burden of extra 

development and maintenance effort but also reduces 

the opportunity of overhead caused by additional 

built-in components of NFV system. Future works 

will take into account the proactive SFC generation 

process based on multiple criteria.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09

1482

References

[1] European Telecommunications Standards 

Institute (ETSI), Network Functions 

Virtualisation Assurance; Report on Active 

Monitoring and Failure Detection, Apr. 2016.

[2] European Telecommunications Standards 

Institute (ETSI), Network Function 

Virtualisation Resiliency Requirements, Jan. 

2015.

[3] Internet Engineering Task Force (IETF), RFC 

7665 Service Function Chaining (SFC) 

Architecture, https://www.ietf.org/rfc/rfc7665.t 

xt, Oct. 2015.

[4] Internet Engineering Task Force (IETF), RFC 

793 Transmission Control Protocol, https://to 

ols.ietf.org/rfc/rfc793.txt, Sept. 1981.

[5] Internet Engineering Task Force (IETF), RFC 

768 User Datagram Protocol, https://www.iet 

f.org/rfc/rfc768.txt, August 1980.

[6] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, 

“On dynamic service function chain 

deployment and readjustment,” IEEE Trans. 

Netw. and Serv. Management, vol. 14, no. 3, 

pp. 543-553, Sept. 2017.

[7] M. Mechtri, C. Ghribi, O. Soualah, and D. 

Zeghlache, “NFV orchestration framework 

addressing SFC challenges,” IEEE Commun. 

Mag., vol. 55, no. 6, pp. 16-23, Jun. 2017.

[8] Organization for the Advancement of 

Structured Information Standards (OASIS), 

TOSCA Simple Profile for Network Functions 

Virtualization (NFV), Version 1.0, May 2017.

[9] P. Zave, R. A. Ferreira, X. K. Zou, M. 

Morimoto, J. Rexford, “Dynamic service 

chaining with Dysco,” SIGCOMM'17, pp. 

57-70, Aug. 2017.

[10] Vitor A. Cunha, Igor D. Cardoso, João P. 

Barraca, and Rui L. Aguiar, “Policy-driven 

vCPE through dynamic network service 

function chaining,” IEEE NetSoft, pp. 156-160, 

Jun. 2016.

[11] Zabbix. [Online], Available: https://www.zabbi

x.com

[12] The OpenStack Foundation: DevStack. [Online], 

Available: https://bit.ly/2xi77KG

[13] VNFFG update command. [Online], Available: 

https://bit.ly/2QufsDV

[14] Suricata VNFD. [Online], Available: https://bi

t.ly/2MwZupm

[15] The OpenStack Foundation: Deploying 

OpenWRT as VNF. [Online], Available: 

https://bit.ly/2NGTSNX

[16] The OpenStack Foundation: OpenStack Tacker. 

[Online], Available: https://bit.ly/2QsSBIS

응웬쫑당  (Trinh Nguyen)

Trinh Nguyen received his 

B.Eng. degree in Computer 

Networking from University 

of Information Technology, 

VNU-HCM, Ho Chi Minh 

City, Vietnam, in 2012. He 

has been pursuing the 

Master's degree in ICT at Soongsil University 

since Fall 2017. His research interests include 

Software-Defined Networking, Network Function 

Virtualization and Cloud Computing.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his 

B.S. and M.S. degrees in 

electrical engineering from 

Korea University, Seoul, 

Republic of Korea, in 1989 

and 1991, and his Ph.D. in 

electrical engineering from 

State University of New York at Buffalo, New 

York, USA in 2000. He was a senior research 

engineer at Nokia Research Center, Burlington, 

Massachusetts. He is currently a professor in the 

school of electronic engineering, Soongsil 

University, Seoul, Republic of Korea. His research 

interests include visible light communications, 

sensor networks, Internet protocols, control, and 

management issues.

www.dbpia.co.kr


	Mechanism for Dynamically Updating Service Function Chains in NFV
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Dynamic Update Mechanism dfService Function Chains
	Ⅲ. Experiment
	Ⅳ. Conclusion
	References


