
Tacker 기반 NFV 시스템의 워크 로우 정책 기반 VNF

모니터링 모델

응웬트리하이 , 유 명 식°

Workflow Policy-Based VNF Monitoring Model in Tacker-Based

NFV System

Tri-Hai Nguyen , Myungsik Yoo
°

요 약

네트워크 기능 가상화(NFV)는 네트워크 인 라에 유연성 민첩성을 제공할 수 있는 새로운 네트워크 아키텍

쳐 임 워크이다. 통신서비스 공 자 (CSP)는 NFV를 활용하여 기존 하드웨어 상에서 운용이 가능한 VNF

(Virtual Network Function)이라는 소 트웨어 형태로 서비스 제공이 가능하다. 많은 장 에도 불구하고 VNF 모

니터링에서의 확장성 문제는 반드시 다루어져야 하는 문제 이다. 재 NFV 오 소스 랫폼에서 VNF Manager

는 로컬 변수와 로컬 스 드를 사용하여 VNF 모니터링을 수행한다. 만약 시스템에서 많은 수의 VNF기 존재할

때 VNF Manger는 모니터링은 하여 많은 스 드를 실행해야야 하여 확장성 문제가 발생한다. 이 문제를 해결

하기 하여 워크 로우 정책기반 VNF 모니터링 메커니즘을 제안하고 실 가능성 입증을 해 OpenStack 클

라우드 랫폼의 오 소스 NFV 오 스트 이션 리 서비스인 Tacker에서 구 하 다. 제안된 모니터링 메커

니즘으로 인하여 VNF Manager는 확장성 효율성 증 가 가능하다.

Key Words : NFV, Tacker, VNF Monitoring, Mistral, Workflow Service

ABSTRACT

Network Function Virtualization (NFV) is a new network architecture framework that can provide flexibility

and agility in network infrastructure. By leveraging NFV, a communication service provider (CSP) can deploy

network services as a software known as Virtual Network Function (VNF) running on commercial off-the-shelf

hardware. Despite the multiple benefits that NFV provides, the scalability of VNF monitoring is one of the main

challenges that must be addressed for the deployment of network services in the NFV. In the current NFV

open-source platforms, VNF Manager uses a local variable and local threads to monitor the VNFs. If the system

has many VNFs which need to be monitored, the VNF Manager server will have to run a lot of threads to

monitor them. This causes the scalability problem in the VNF Manager server. To tackle this issue, a workflow

policy-based VNF monitoring mechanism is proposed and implemented in Tacker to demonstrate the feasibility of

the proposed mechanism. Thanks to the proposed monitoring system, the VNF Manager can be more scalable

and effective.

논문 18-43-09-10 The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09
https://doi.org/10.7840/kics.2018.43.9.1483

1483

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology

Research Center) support program (IITP-2018-2017-0-01633) supervised by the IITP(Institute for Information & communications

Technology Promotion).

First Author : (ORCID:0000-0002-2132-2290)Department of ICMC Convergence Technology, Soongsil University, Seoul, Republic

of Korea, nguyentrihai@soongsil.ac.kr, 학생회원

° Corresponding Author : (ORCID:0000-0002-5578-6931)School of Electronic Engineering, Soongsil University, Seoul, Republic of

Korea, myoo@ssu.ac.kr, 정회원

논문번호：201809-273-D-RN, Received September 6, 2018; Revised September 17, 2018; Accepted September 17, 2018

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09

1484

Ⅰ. Introduction

To cope with the increasing network utilization

driven by Internet-of-Things (IoT), and to satisfy the

demand for new network services and performance

guarantees, Network Function Virtualization

(NFV)
[1] was proposed to reduce cost and accelerate

service deployment for the communication service

providers (CSPs). Network Function Virtualization

(NFV) is an emerging approach in which network

functions are no longer executed by proprietary

hardware appliances, but instead can run on

generic-purpose servers as a software known as

Virtual Network Functions (VNFs). As a result, it

offers an opportunity to significantly increase the

flexibility of infrastructure, simplify the resource

management process, and decrease both capital and

operational costs
[2,3].

NFV architecture includes three major

components: (i) Virtual Network Functions (VNFs)

are software implementation versions of network

functions; (ii) NFV Infrastructure (NFVI) contains

the hardware and software components where VNFs

are deployed; and (iii) NFV Management and

Orchestration (MANO) includes NFV Orchestrator

(NFVO), VNF Manager (VNFM), and Virtualized

Infrastructure Manager (VIM) that orchestrate and

manage the NFVI resources and lifecycle

management of VNFs.

There are many open-source solutions for NFV
[4].

The OpenStack cloud platform[5] and Tacker[6]

projects are chosen among them. OpenStack is an

open-source cloud computing platform that is

identified as NFVI and VIM in the NFV

architecture. Tacker is an OpenStack based NFV

orchestration and VNF management service to

deploy and operate Virtual Network Functions

(VNFs) on an OpenStack based NFV Platform. It is

based on ETSI MANO Architectural Framework and

provides a functional stack to orchestrate VNFs

end-to-end. Tacker is responsible for VNFM and

NFVO in NFV architecture.

Despite the multiple benefits that NFV provides,

some challenges must be considered and should be

addressed for the deployment of network services.

This research focuses on the challenges of scalable

VNF monitoring in OpenStack Tacker-based NFV

system. The Tacker server needs to monitor various

status conditions of VNF entities that it deploys and

manages. Currently, Tacker server uses a local

variable and local threads to do the VNF

monitoring. If the system has many VNFs which

needs to be monitored, the Tacker server will have

to run a lot of threads to monitor them. As a result,

this causes scalability problem in Tacker server, and

creates the huge impact on the application

programming interface (API) function’s

performance. In this article, a workflow policy-based

VNF monitoring model is proposed and

implemented in Tacker. Recently, there is an

OpenStack workflow service called Mistral
[7], which

is integrated as a part of Tacker system. Therefore,

it is efficient when Tacker-based NFV system uses

Mistral to monitor VNFs.

The remainder of this article is organized as

follows. Section II shows the details of the proposed

VNF monitoring mechanism. The experimental setup

and results are shown in Section III. Finally, the

conclusions are discussed in Section IV.

Ⅱ. A Workflow Policy-Based VNF
Monitoring Model

In current model, Tacker hosts a local variable

and local threads to monitor VNFs and directly

update the status of VNFs to the database that stores

VNF status information. Therefore, if many VNFs

are deployed, Tacker needs many threads to do the

monitoring which causes a huge impact on the

performance of Tacker. Therefore, it brings

significant benefits if we separate the monitoring of

VNFs as a form of an independent task. As a result,

it can improve the performance of API function and

solve the scalability issue of VNF monitoring in

Tacker VNFM.

Figure 1 illustrates the Mistral workflow

policy-based VNF monitoring mechanism in Tacker.

Mistral project aims to provide a mechanism to

define tasks and workflows without writing code,

manage and execute them in the cloud environment.

www.dbpia.co.kr

논문 / Tacker 기반 NFV 시스템의 워크 로우 정책 기반 VNF 모니터링 모델

1485

Fig. 1. A workflow policy-based VNF monitoring model
in Tacker

Fig. 2. Sequence diagram for creating VNF in the proposed model.

In the proposed model, the Mistral workflow service

handles the VNF monitoring task. Tacker will

generate a VNF monitoring workflow and execute it

via Workflow service if there is a VNF configured

with monitor policy. The workflow and execution

will be deleted once the monitored target VNF is

removed. However, the workflow service cannot

directly access to NFV database, hence, the Tacker

Conductor is proposed to access database for the

Mistral workflow service. When the workflow is

removed, the Tacker will kill the workflow action

via the message queue. The workflow service will

use Remote Procedure Call (RPC) to communicate

with Tacker Conductor server. To deal with the

scalability of monitoring, multiple Tacker

Conductors will be deployed.

Monitor policy is divided into two parts, that is,

policy monitor and policy action. Policy monitor,

that is, ping and HTTP-ping, is implemented as the

VNF Policy Monitor in the workflow service. Policy

action, for example, autoscaling, respawn, log,

log-and-kill, will be called in Tacker Conductor.

Each VNF with monitor policy will generate a

monitor action ID with monitoring workflow stored

as meta information of VNF instance, therefore, it

can be easily managed.

There are three events that trigger this VNF

monitoring mechanism, that is, VNF creation, VNF

deletion, and VNF scaling. The VNF update does

not trigger this VNF monitoring mechanism because

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09

1486

Fig. 3. Sequence diagram for deleting VNF in the
proposed model.

Fig. 4. Sequence diagram for scaling VNF in the
proposed model.

it only configures the Virtual Deployment Units

(VDUs) of VNF and does not affect the VNF health

status. The following sequence diagrams show the

procedure of creating VNF, deleting VNF and

scaling VNF, respectively.

The sequence diagram for creating VNF is shown

in Figure 2. After a user creates VNF with the VNF

monitor policy, the Tacker generates monitoring

workflow and corresponding monitor action ID, then

it calls the VNF policy module in the Mistral

workflow service via RPC channel. When policy

action is needed, the VNF Policy Monitor module

will call Tacker Conductor's execute-policy-action.

Then, method execute-policy-action in Tacker

Conductor will execute the predefined policy action

such as respawn, log etc. If Tacker Conductor finds

the action is obsolete, it will return bad-action

update via RPC channel to the VNF Policy Monitor

module, then the VNF Policy Monitor in Mistral

workflow service will exit

Figure 3 illustrates the sequence diagram for

deleting VNF. After the user sends the request to

delete the VNF, the Tacker gets monitor action ID

of the VNF and deletes VNF monitoring action

workflow and its execution. Then, Tacker sends the

kill action request to kill the VNF monitoring action

in Mistral workflow service via RPC.

Figure 4 shows the sequence diagram for scaling

VNF. When the VNF is scaling, the Tacker get the

workflow information and monitor action ID of the

VNF. Then, it will update action to Mistral

workflow service via RPC. If the VNF scales out,

the VNF monitoring task in policy action will be

added for additional VNF instance. If the VNF

scales in, the VNF monitoring task of removed VNF

instance will be deleted.

Ⅲ. Experiment

Table 1 shows the implementation environment's

specification. In this experiment, Tacker together

with OpenStack is adopted to build the testbed

environment via the Devstack tool
[8] which is a

series of extensible scripts used to quickly bring up

a complete OpenStack environment.

The proposed model is implemented on the

Tacker by modifying the “monitor.py” file in

“vnfm” folder. The VNF monitoring workflow

module is written in a new file called

“vnf_monitor_action.py” contained in

“vnfm/workflows” of Tacker source code. The

“conductor” folder, which is conductor server

mentioned before, is also added to the source code

that conducts RPC communication channel for

Mistral workflow service and Tacker Conductor.

The implementation and configuration files used in

this experiment can be found at [9].

Before the VNF is deployed, the VIM needs to

be registered and the VNF Descriptor needs to be

www.dbpia.co.kr

논문 / Tacker 기반 NFV 시스템의 워크 로우 정책 기반 VNF 모니터링 모델

1487

Fig. 5. Multiple VNFs are monitored by corresponding workflow executions.

Entity Details

Server hardware

Intel(R) Core(TM) i5-7600 CPU @

3.50GHz (4 Cores), 16GB RAM,

120GB SSD

Operation System Ubuntu 16.04 LTS, 64-bit

Devstack Version: stable/pike

Tacker Version: stable/pike

Mistral Version: stable/pike

Table 1. Specification of implementation environment

on-boarded. When the VNF is successfully

deployed, the Mistral workflow service receives

RPC request for the VNF monitoring. It validates

and then starts the workflow task for VNF

monitoring. The VNF monitoring action is called

and the loop for monitoring is then executed.

When multiple VNFs are deployed as shown in

Figure 5-a, the Mistral workflow service also creates

multiple corresponding workflow executions as

shown in Figure 5-b. If a VNF is deleted, a

corresponding workflow execution is also removed.

Ⅳ. Conclusion

This article proposes and evaluates the workflow

policy-based VNF monitoring mechanism for

Tacker-based NFV system. The VNF monitoring

task will be processed by an external workflow

service, hence, the VNF Manager can be more

scalable and effective. The proposed model is

implemented in Tacker which is an open-source

NFV MANO in the OpenStack cloud platform. The

experiment results show that the proposed VNF

monitoring model is feasible and effective.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-09 Vol.43 No.09

1488

References

[1] ETSI NFV, Network function virtualisation:

An introduction, benefits, enablers, challenges

& call for action, Introductory White Paper,

Issue 1, SDN & OpenFlow World Congr.,

Darmstadt, Germany, Oct. 2012.

[2] R. Mijumbi, et al., “Network function

virtualization: State-of-the-art and research

challenges,” IEEE Commun. Surveys Tuts.,

vol. 18, no. 1, pp. 236-262, 2016.

[3] T. H. Nguyen, T. Nguyen, and M. Yoo,

“Analysis of deployment approaches for

virtual customer premises equipment,” in

Proc. 32nd ICOIN 2018, pp. 289-291, Chiang

Mai, Thai Lan, Jan. 2018.

[4] C. Tipantuna and Y. Paul, “Network functions

virtualization: An overview and open-source

projects,” 2017 IEEE Second Ecuador

Technical Chapters Meeting (ETCM). IEEE,

2017.

[5] O. Sefraoui, M. Aissaoui, and M. Eleuldj,

“OpenStack: toward an open-source solution

for cloud computing,” Int. J. Comput. Appl.,

vol. 55, no. 3, 2012.

[6] The OpenStack Foundation: OpenStack Tacker.

[Online]. Available: https://docs.openstack.org/

tacker/.

[7] The OpenStack Foundation: OpenStack Mistral.

[Online]. Available: https://docs.openstack.org/

mistral/.

[8] The OpenStack Foundation: DevStack. [Online].

Available: https://docs.openstack.org/devstack/.

[9] Tacker VNF Monitoring based on Mistral [On

line]. Available: https://anda.ssu.ac.kr/tacker-m

istral/.

응웬트리하이 (Tri-Hai Nguyen)

Tri-Hai Nguyen received his

B.S. degree in computer

science from the University

of Information Technology,

Ho Chi Minh City, Vietnam,

in 2015 and M.Eng. degree

in information and

communication technology from Soongsil

University, Republic of Korea, in 2017. He is

currently pursuing the Ph.D. degree in information

and communication technology at Soongsil

University, Seoul, Republic of Korea. His research

focuses on network function virtualization and

cloud computing.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

www.dbpia.co.kr

	Workflow Policy-Based VNF Monitoring Model in Tacker-Based NFV System
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. A Workflow Policy-Based VNF Monitoring Model
	Ⅲ. Experiment
	Ⅳ. Conclusion
	References

