
논문 18-43-10-17 The Journal of Korean Institute of Communications and Information Sciences '18-10 Vol.43 No.10
https://doi.org/10.7840/kics.2018.43.10.1676

1676

NFV 관리 및 오케스트레이션을 위한 경량 시뮬레이터

응웬트리하이 , 유 명 식°

Lightweight Simulator for NFV Management and Orchestration

Tri-Hai Nguyen , Myungsik Yoo
°

요 약

네트워크 기능 가상화 (NFV)는 전용 하드웨어의 네트워크 기능을 분리하고 기존 상용서버에 가상 네트워크 기

능 (VNF)을 통해 서비스를 제공함으로써 오늘날의 네트워크에서 네트워크 관리 및 서비스 제공을 용이하게 하는

유망한 패러다임이다. NFV 관련 연구를 가속화하기 위해서는 실험을 수행 할 NFV 환경을 제공 할 수 있는 경량

시뮬레이터가 필요하다. 본 논문에서는 잘 알려진 네트워크 에뮬레이터인 Mininet 기반의 경량 NFV 시뮬레이터를

개발하였다. Python 프로그래밍 언어로 작성되었으며 Linux 환경에서 실행된다. 제안 NFV 시뮬레이터는 VNF 및

서비스 기능 체이닝 (SFC)을 평가하는 데 필수적인 환경을 제공 할 수 있다.

Key Words : NFV, Simulator, VNF, VNFFG, Mininet

ABSTRACT

Network Function Virtualization (NFV) is a promising paradigm which facilitates network management and

service provision on today’s network by decoupling network functions from the underlying dedicated hardware

and offering them through Virtual Network Functions (VNFs) on the commercial off-the-shelf servers. To

accelerate the related research on NFV, there is a need for an inexpensive simulator that can provide the NFV

environment to conduct the experiments. In this paper, we develop a lightweight NFV simulator based on

Mininet, which is a well-known network emulator. It is written by Python programming language and runs on

the Linux environment. This NFV simulator can create the essential environment to evaluate the VNF and

Service Function Chaining.

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology

Research Center) support program (IITP-2018-2017-0-01633) supervised by the IITP(Institute for Information & communications

Technology Promotion).

First Author : (ORCID:0000-0002-2132-2290)Department of ICMC Convergence Technology, Soongsil University, Seoul, Republic

of Korea, nguyentrihai@soongsil.ac.kr, 학생회원

° Corresponding Author : (ORCID:0000-0002-5578-6931)School of Electronic Engineering, Soongsil University, Seoul, Republic of

Korea, myoo@ssu.ac.kr, 종신회원

논문번호：201810-299-D-RN, Received October 1, 2018; Revised October 4, 2018; Accepted October 4, 2018

Ⅰ. Introduction

Currently, launching a new network service needs

to deploy a variety of proprietary hardware

appliances and accommodating these hardware

appliances is becoming more and more difficult.

Moreover, with the ever-increasing and various

service requirements, service providers must scale

up their physical infrastructure periodically, which

directly leads to high capital expenditure (CAPEX)

and operation expenses (OPEX). Network Function

Virtualization (NFV)
[1] utilizes standard IT

www.dbpia.co.kr

논문 / NFV 관리 및 오케스트레이션을 위한 경량 시뮬레이터

1677

Fig. 1. NFV architecture.

virtualization technologies to separate the network

function from hardware. Therefore, it can effectively

reduce the CAPEX and OPEX for service providers.

In principle, all network functions and other

network elements can be considered for

virtualization. These virtualized instances are

referred to as Virtual Network Functions (VNFs) in

the context of NFV, which provide the same

functionalities as the corresponding physical

instances. Besides, VNFs can be instantiated,

executed and deployed by service providers in the

NFV Infrastructure (NFVI) environment which

provides the required resources such as compute,

storage, and network. To manage and orchestrate

these VNFs in NFVI, there is an element called

NFV Management and Orchestration (MANO). NFV

MANO can be further divided into three entities,

that is, Virtualized Infrastructure Manager (VIM),

VNF Manager (VNFM) and NFV Orchestrator

(NFVO). The NFV architecture is depicted in Figure

1. NFV MANO, NFVI, and VNFs communicate

each other through application programming

interfaces (APIs) as shown by lines in Figure 1.

To speed up NFV related research, tools that can

provide a testbed for experiments with NFV systems

is required. Currently, there are some related NFV

simulation tools. Devstack
[3] enabled Tacker[4] can

bring up a complete OpenStack environment with

NFV MANO service. Unfortunately, it is quite

heavy and takes a lot of time for bringing complete

NFV environment. Mininet
[5] is a well-known

network emulator but it only supports the traditional

network and the software-defined network. For these

reasons, a lightweight NFV simulator is proposed

and implemented in this paper.

The rest of this paper is organized as follows.

Section II introduces the proposed NFV simulator

and its features. The implementation of the NFV

simulator is shown in Section III. Finally, the

conclusion of this paper is presented in Section IV.

Ⅱ. A Lightweight NFV Simulator

 In the OpenStack, Tacker[4] is the project that

implements a generic NFV MANO. DevStack[3]
 tool

along with Tacker service can simplify the

deployment of an OpenStack cloud with NFV

orchestration and management. However, deploying,

configuring and managing NFV-based OpenStack

environments is still a time-consuming process with

a considerable learning curve. On the other hand,

Mininet
[5] has shown itself as a great tool for agile

network/SDN experiment. However, it does not

support NFV. The goal of the proposed NFV

simulator tool is to alleviate the developer and

researchers' tedious task of setting up a complete

NFV environment. As a result, they can focus on

other works such as developing a VNF, prototyping,

implementing an orchestration algorithm or a

customized traffic steering.

The proposed NFV simulator is depicted in

Figure 2. It is written in Python programming

language and based on the Mininet API library. By

using Mininet API, the simulator can the essential

networking environment, which includes the

controller, switches, links, nodes, network topology.

We extend the specific NFV scenario that can run

and evaluate the VNF and VNF Forwarding Graph

(VNFFG) or Service Function Chain (SFC). A

VNFFG or SFC is a set of ordered list of VNFs.

NFV simulator allows to define the VNF and

VNFFG into Mininet by using Topology and

Orchestration Specification for Cloud Applications

(TOSCA) templates as same as Tacker.

NFV simulator includes several characteristics

such as NFV catalog, VNF Manager, and NFV

Orchestrator. In particular, NFV catalog includes

VNF descriptors, VNFFG descriptors. VNF Manager

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-10 Vol.43 No.10

1678

Fig. 2. NFV simulator architecture.

can do the basic life-cycle of VNF such as create,

update, delete VNF and it also can facilitate initial

configuration of VNF. NFV Orchestrator can

connect VNFs using a Service Function Chain

(SFC) that described in a VNFFG Descriptor,

support VNF placement policy that ensures efficient

placement of VNFs, and also support symmetrical

and asymmetrical traffic from and to the VNFs.

Other features such as network definition via Virtual

Link (VL), IP/MAC definition via Connection Point

(CP), emulation of flavor properties though

Mininet’s CPULimitedHost, and cloud-init scripts

are also supported in NFV simulator.

More specifically, the NFV simulator will create

three default networks including net_mgmt

(192.168.120.0/24), net0 (10.10.0.0/24) and net1

(10.10.1.0/24). It will assign random IPs within the

defined networks for hosts. In the TOSCA-based

template, we can also manually define the networks

in the VL definition section and assign the IP/MAC

address for a VNF in the CP definition section. The

NFV simulator emulates VNF resource configuration

defined via num_cpus properties or through flavor in

the TOSCA-based template. Currently, NFV

simulator supports VNF flavors such as small (1

CPU), medium (2 CPUs), large (4 CPUs), and

xlarge (8 CPUs). The NFV simulator also supports

VNFs configuration through user-data. The NFV

simulator can be run with the standalone mode or

with the external network controller. With the

external network controller mode, an external

controller (e.g., POX, OpenDaylight, Floodlight

controller) needs to be run on another terminal in

the Linux operating system.

Ⅲ. Experiment

The source code of the NFV simulator is

available online
[6]. The NFV simulator is written in

Python, running on Linux (i.e., Ubuntu 16.04)

environment. The NFV simulator only takes a few

minutes and small storage (a few megabits) to

completely setup the NFV environment. It is more

lightweight than Devstack, which takes an hour and

some gigabytes of storage to fully install the NFV

environment.

The main source code of NFV simulator is

contained in “nfv-simulator.py” file. The samples of

VNF descriptor, VNFFG descriptor, and functional

testing files are included in the “samples” folder.

The following commands are used to run the NFV

simulator and executed by command-line interface

(CLI) in Ubuntu 16.04. The NFV simulator is

required some dependent libraries and packages such

as mininet, openvswitch-testcontroller,

python-netaddr, python-yaml which will be installed

by the “install-prequirements.sh” script in the source

code. Then, NFV simulator can be run in standalone

mode as shown in Figure 3 by the following

command.

$ sudo python ./nfv-simulator.py --standalone

The user can type “help” in “nfv-simulator>” to

show the commands can be used. There are some

NFV related commands such as vnf_create,

vnf_delete, vnf_list, vnfd_create, vnfd_delete,

vnfd_list, vnfd_template_show, vnffg_create,

vnffg_delete, vnffg_list. To know how to use the

command, the user can type the command to CLI

without other parameters. For example, to show the

usage of vnf_create command, the user only needs

to type “vnf_create” into nfv-simulator CLI as

illustrated in Figure 4.

The “samples/test” folder contains some

functional testing files. For example, there is a

testing file named “vnffg_test” for evaluating the

VNFFG as shown in Table. 1. It creates a “vnfUD”

www.dbpia.co.kr

논문 / NFV 관리 및 오케스트레이션을 위한 경량 시뮬레이터

1679

Fig. 3. NFV simulator is started.

Fig. 5. The Results Of Vnffg_Test Testing.

Fig. 4. vnf_create command usage

VNF with TOSCA-based template named

“tosca-vnf-userdata.yaml”. Then, it creates a client

host, a server host, and a switch. The server is

installed as an HTTP server by the “python -m

SimpleHTTPServer 80 &” command. Finally, a

VNFFG or service chain is created with

TOSCA-based template named

“tosca-vnffgd-hello-world.yaml” and “vnfUD” VNF

is a node that is mapping the client and server hosts.

To run this testing file, the user type “source

samples/test/vnffg_test” in nfv-simulator CLI. Figure

py "*** Starting vnf <tosca-vnfd-userdata.yaml> ..."

vnf_create --vnfd-file samples/vnfd/tosca-vnfd-userdata.yaml

vnfUD

py "\n*** Creating http client ..."

add_host client 192.168.120.1/24

py "*** Creating http server ..."

add_host server 192.168.120.2/24

py "*** Starting the switch ..."

switch s192.168.1 start

py "*** Starting HTTP server ..."

py server.cmdPrint('python -m SimpleHTTPServer 80 &')

py "*** Starting vnffg <tosca-vnfd-hello-world.yaml> ..."

vnffg_create --vnffgd-template

samples/vnffgd/tosca-vnffgd-hello-world.yaml --vnf-mapping

vnfd-hello-world:'vnfUD' --symmetrical false vnffg-sample

Table 1. The content of vnffg_test

5 depicts the results of vnffg_test testing. The final

line in the functional test shows the chain of service

which includes the IP source, port source, IP

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-10 Vol.43 No.10

1680

Fig. 6. The Http Traffic Goes Through Vnf Interface.

destination, port destination, VNF forwarder, and

port of VNF forwarder.

To show if the VNF forwarder – vnfUD works,

the xterm window of the vnfUD is called by “xterm

vnfUD” in the NFV simulator CLI, and then the

client host gets HTTP content of server host by

“client curl server” command. In the xterm windows

of the vnfUD, its network interface is sniffed by

“tcpdump” tool so that the HTTP traffic of the curl

command through the VNF interface can be seen as

shown in Figure 6.

Ⅳ. Conclusion

In this paper, a lightweight NFV simulator is

proposed and implemented. It based on Mininet and

has the workflow the same as the Tacker NFV

project. The completed installation of NFV simulator

only takes a few minutes and it only occupied a

small number of the hardware resource. By using

this NFV simulator, the developer and researcher

can offload the tedious task of setting up a whole

NFV environment and help them to more focus on

the developing of VNF, implementing the algorithm

or customizing traffic steering.

References

[1] ETSI NFV, Network function virtualisation:

An introduction, benefits, enablers, challenges

& call for action, Introductory White Paper,

Issue 1, SDN & OpenFlow World Congr.,

Darmstadt, Germany, Oct. 2012.

[2] T. H. Nguyen, T. Nguyen, and M. Yoo,

“Analysis of deployment approaches for

virtual customer premises equipment,” in

Proc. 32nd ICOIN 2018, Chiang Mai, Thai

Lan, Jan. 2018.

[3] The OpenStack Foundation: Devstack. [Online].

Available: https://docs.openstack.org/devstack/.

[4] The OpenStack Foundation: OpenStack Tacker.

[Online]. Available: https://docs.openstack.org/

tacker/.

[5] Mininet. [Online]. Available: http://mininet.org/.

[6] NFV Simulator. [Online]. Available: https://an

da.ssu.ac.kr/nfv-simulator/.

www.dbpia.co.kr

논문 / NFV 관리 및 오케스트레이션을 위한 경량 시뮬레이터

1681

응웬트리하이 (Tri-Hai Nguyen)

Tri-Hai Nguyen received his

B.S. degree in computer

science from the University

of Information Technology,

Ho Chi Minh City, Vietnam,

in 2015 and M.Eng. degree

in information and

communication technology from Soongsil

University, Republic of Korea, in 2017. He is

currently pursuing the Ph.D. degree in information

and communication technology at Soongsil

University, Seoul, Republic of Korea. His research

focuses on network function virtualization and

cloud computing.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

www.dbpia.co.kr

	Lightweight Simulator for NFV Management and Orchestration
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. A Lightweight NFV Simulator
	Ⅲ. Experiment
	Ⅳ. Conclusion
	References

