
컨테이 오 스택을 한 단 단 모니터링

시스템 설계

응웬쫑당 , 유 명 식°

End-to-End Monitoring System Design for Containerized

OpenStack

Trinh Nguyen , Myungsik Yoo
°

요 약

클라우드 공 자는 컨테이 기술을 사용하는 새로운 방식으로 발 하고 있다. 목표는 유연성이 없고 자원 집

약 인 클라우드 인 라 구축 로세스를 유연하고 경제 인 로세스로 체하는 것이다. 새로운 소 트웨어 아

키텍처는 서비스 연결 방식을 변경한다. 이로 인해 클라우드 랫폼은 자원 설정, 성능, 오류 리 등을 포함한

여러 가지 새로운 문제에 직면하게 된다. 따라서 컨테이 시스템의 가용성과 안정성을 보장하려면 모니터링 기능

을 심층 으로 고려해야 한다. 그러나 이러한 문제는 아직 연구되지 않았으며, 이러한 컨테이 기반 클라우드 환

경을 한 단 단 모니터링 시스템을 설계에 한 연구가 수행되어야 한다. 본 논문은 컨테이 화된 OpenStack

시스템을 한 모니터링 아키텍처와 메커니즘을 제안한다.

Key Words : Monitoring System, Container-based Cloud, OpenStack, Docker, Kolla

ABSTRACT

Cloud providers are moving toward a new deployment method that is using the container technology. The

objective is to replace the inflexible, painful, resource-intensive deployment process of the cloud infrastructure

with a flexible, painless, inexpensive deployment process. For instance, OpenStack uses the Kolla project [11] to

foster the effort and has already reached a mature level which can be used in production. The new software

architecture changes how services are connected together. That exposes the cloud platform to many new

challenges including resource provision, performance, failure management etc. Therefore, to guarantee the

availability and stability of the containerized system, monitoring features have to be considered thoroughly.

However, that subject is left unexplored and raises a need to design an end-to-end monitoring system for such

container-based cloud environment. This paper proposes a monitoring architecture and mechanism for the

containerized OpenStack system.

논문 18-43-10-18 The Journal of Korean Institute of Communications and Information Sciences '18-10 Vol.43 No.10
https://doi.org/10.7840/kics.2018.43.10.1682

1682

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology

Research Center) support program (IITP-2018-2017-0-01633) supervised by the IITP(Institute for Information & communications

Technology Promotion).

First Author : (ORCID:0000-0001-6885-5935)Department of ICMC Convergence Technology, Soongsil University, Seoul, Republic

of Korea, dangtrinhnt@soongsil.ac.kr, 학생회원

° Corresponding Author : (ORCID:0000-0002-5578-6931)School of Electronic Engineering, Soongsil University, Seoul, Republic of

Korea, myoo@ssu.ac.kr, 종신회원

논문번호：201810-300-D-RN, Received October 1, 2018; Revised October 4, 2018; Accepted October 4, 2018

www.dbpia.co.kr

논문 / 컨테이 오 스택을 한 단 단 모니터링 시스템 설계

1683

Fig. 1. OpenStack Kolla's Hight Level Architecture

Ⅰ. Introduction

OpenStack is an open source cloud platform that

has a modular architecture. Deploying OpenStack is

difficult because it comprises many different

components (e.g. Nova, Neutron, Keystone etc.) that

need to be connected together. A big problem with

most of the existing deployment methods is that all

OpenStack services are deployed as static packages

on top of a shared operating system. This makes the

ongoing operations, troubleshooting and upgrades

really problematic. To resolve those issues, cloud

operators deploy all OpenStack services using

containers. Kolla was born out of that idea and

become one of the main projects that are housed

within OpenStack's umbrella. The deployment

process is quite complicated, however, the end result

is a highly flexible OpenStack cloud deployed using

Docker containers, managed and orchestrated by

Kolla Ansible, a set of Ansible playbooks that

automate the tasks.

Kolla provides production-ready containers and

deployment tools for operating OpenStack clouds

that are scalable, fast, reliable, and upgradeable.

Kolla uses Docker to store the file-system contents

of images and provides an execution environment

for those containers. One key advantage of Docker

is that a registry system provides a central repository

of images which can be used to instantiate a

deployment. By choosing Docker, cloud providers

obtain the superpower of immutability with the

Docker registry. Kolla has approximately ninety

containers. Sixty would likely be running; the

remainders are base containers used as intermediate

build steps shared by children containers. Figure 1

illustrates the OpenStack deployed with Kolla's

architecture at a higher level where all of the

services are containers.

Monitoring a cloud platform like OpenStack has

been a mature subject in both literature and reality.

It is a critical process for checking the vitality of a

cloud infrastructure's software, physical as well as

virtual assets. Moreover, monitoring is the first step

in minimizing the cloud failures's impact [10].

Cloud providers often use agent-based monitoring

solutions that are installing client software inside

OpenStack services to collect all the needed

information. Because most for the services are built

natively in the operating system in the traditional

deployment model, monitoring agents are obviously

another kind of application that can operate at the

system level to read most of the desired data.

However, when all of the services are packed into

containers, that monitoring model will have to

change. Specifically, the agent software needs to be

upgraded with the ability to harvest information

from the running containers. Also, OpenStack

services's interconnections require a different

monitoring approach. Because, unlike conventional

services, the containers communicate with each

other not using ports but running in a host

networking mode, effectively disabling any network

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-10 Vol.43 No.10

1684

isolation and giving all containers access to TCP/IP

stacks of their Docker hosts. Those considerations

are critical because without the data sent from the

agents, monitoring server is useless and thus, breaks

OpenStack's reliability.

By studying the Docker container's architecture

and how it is orchestrated in the container-based

cloud platform this paper presents a novel

end-to-end monitoring solution for OpenStack. The

proposed framework not only tackles the challenges

of the dynamic and complex nature of the

containerized system but also tries to provide a

practical and extensible platform that can evolve

with the cloud. The rest of this paper is organized

as follows. Section II describes the architecture and

building blocks of the proposed monitoring system

for container-based OpenStack. Section III shows

the experimental results to demonstrate the

feasibility and effectiveness of the designed solution.

Finally, section IV concludes the paper and

discusses future works.

Ⅱ. An End-To-End Monitoring System For
Containerized Openstack

Having a good understanding of the containerized

cloud platform is crucial in designing a

comprehensive monitoring solution for it. Thus, a

brief analysis of the containerized OpenStack needs

to be introduced first. The containerized OpenStack

as shown in Fig. 1 consists of two main functional

groups. The first group is Deployment Master or

server that is in charge of orchestrating the container

deployment for OpenStack services using Ansible

[12] automation tool. In addition, a Docker Registry

is optionally placed within the deployment master to

provide the container images for Ansible tasks.

Otherwise, Kolla has to use an external container

repository. The second functional group of

OpenStack Kolla is the Deployment Hosts where it

could be only one host or multiple hosts depending

on the size of the desired cloud system. On each

host, there is a Docker engine that is used to

manipulate the dockerized services. Hence, two

different monitoring targets can be identified which

are the Deployment Master or Hosts and the

containerized OpenStack services inside each host.

Based on the architecture of Kolla, an end-to-end

monitoring solution is designed. The proposed

system comprises two components. The first and

foremost is the server side which is also split into

elements. Those are the monitoring server where

monitored data is scraped from the agents and stored

in the time-based format, the alert manager that

manages all the alerting tasks when a predefined

event occurs (e.g. send alarm email to administrator

when a target is down), and finally, monitored data

stored in the server that can be queried and

visualized by the front-end. The next component is

the client side or the monitoring agents which plays

a very important role in the system as discussed in

the previous section of this paper.

Additionally, there are two types of agents

deployed in this proposed system because two

different monitoring targets are presented. They are

the Deployment Master or Hosts which are

operating systems, and the containerized OpenStack

services which are special packages that contain the

library dependencies, the binaries, and a basic

configuration. The agents will expose a specific set

of metrics from the environment in which they are

installed. The agents deployed in the Deployment

Master or Hosts are normal applications that can

scrape information such as CPU, Memory usage,

Disk I/O etc. directly from the underlying OS. On

the other hand, the client software that monitors

containers, i.e. the cAgent, needs to have the ability

to communicate with the cgroups virtual file system

[13] where Docker containers performance statistics

are stored via the Docker engine [8]. The later agent

type can be realized using cAdvisor [14], a special

tool designed to monitor containers. It can be

installed natively in the host or inside a container.

By being flexible on the agent software, the

proposed monitoring system opens an opportunity

for many different useful metrics of the targets to be

collected and processed. However, that method

creates a problem with complex communication

between the client and monitoring server which

traditionally requires lots of development effort.

www.dbpia.co.kr

논문 / 컨테이 오 스택을 한 단 단 모니터링 시스템 설계

1685

Fig. 2. The Proposed Monitoring System Architecture.

Server Specifications

Deployment

Master

CPU Intel Xeon E3 1240 3.4GHz

4 x 4GB DDR3 1333MHz

1TB HDD

Ubuntu 16.04 LTS x64

Deployment

Host

CPU Intel Xeon E3 1240 v2

3.4GHz

4 x 4GB DDR3 1333MHz

1TB HDD

Ubuntu 16.04 LTS x64

Prometheus

Server

CPU Intel Core i5 7600 3.5GHz

8GB HDDR4 2400MT/s

1TB HDD

Ubuntu 16.04 LTS x64

Table 1. Specifications of the experiment

Therefore, a unified communication protocol of

monitoring server and its agents is required. In this

proposed system, monitoring clients expose metric

data of the targets to the server via a TCP/IP

channel that is a port and the address of those

targets. Hence, Prometheus [15], a monitoring

software, which supports that kind of client-server

communication is leveraged.

As shown in Figure 2, the proposed architecture

can monitor the Deployment Master and the

Deployment Hosts in which the containerized

OpenStack services are deployed as well as the

containers. Additionally, all the autonomous

deployment tasks are controlled in harmony with the

Continuous Integration and Continuous Development

(CI/CD). Those capabilities of the proposed system

create an end-to-end monitoring solution for the

container-based cloud platform.

Ⅲ. Experiment

An experiment was conducted to evaluate the

proposed monitoring system. Firstly, a containerized

OpenStack environment is setup using Kolla with

one Deployment Master and one Deployment Host

containing all the services including Heat, Nova,

Neutron, Cinder, Glance, Swift, Horizon, and

Keystone. Next, a Prometheus server instance along

with the Alert Manager and the Grafana dashboard

[16] as front-end are installed in another machine.

Finally, for each monitoring targets defined in

Section II, we deploy the suitable agents and

configure them to connect with the Prometheus

server. Specifications of the three servers are

presented in Table 1.

In this experiment, two scenarios are examined to

recognize the feasibility and practicality of the

proposed mechanism. The first scenario is that when

a high CPU usage event occurs on the Deployment

Host, the agent directly harvests information from

the servers and send it to Prometheus. The abnormal

event will be displayed on the Grafana dashboard.

As shown in Figure 3, the CPU usage (CPU in user

mode area) of the Deployment Host is more than

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '18-10 Vol.43 No.10

1686

Fig. 3. High CPU usage (CPU in usage mode) is shown in the Grafana dashboard.

Fig. 4. The Neutron Server container is down. Grafana stops displaying Neutron Server container's memory usage.

90%. The second scenario is when a containerized

OpenStack component (in this case, we chose the

Neutron Server service) is killed, cAdvisor which is

the monitoring agent installed inside another

container exposes the disconnection of Neutron

Server metric to Prometheus server. The Grafana

dashboard stops displaying the monitoring data of

the Neutron Server container. For example, the

memory usage of the Neutron Server container is

stopped showing as presented in Figure 4.

Ⅳ. Conclusion

With the advanced features of the container

technology, OpenStack deployment and operation

become increasingly flexible and painless. However,

the containerized architecture of the cloud while

eliminates some existing problems such as

dependencies, resource consumption etc. creates new

challenges in failure management and reliability

assurance. Tackling those issues, the proposed

monitoring mechanism through careful consideration

and experiment has proved to be feasible and

practical to provide an end-to-end monitoring

solution for the container-based OpenStack. Future

work will consider a deployment model for the

agents that are automatic and scalable to adapt to

the increasingly complex structure of the cloud.

References

[1] M. Großmann and C. Klug, “Monitoring

container services at the network edge,” IEEE

2017 29th Int. Teletraffic Congress (ITC 29),

vol. 1, 2017.

[2] C.-C. Chang, et al., “A kubernetes-based

monitoring platform for dynamic cloud

resource provisioning,” IEEE GLOBECOM,

Dec. 2017.

[3] F. Moradi, et al., “ConMon: an automated

www.dbpia.co.kr

논문 / 컨테이 오 스택을 한 단 단 모니터링 시스템 설계

1687

container based network performance

monitoring system,” IEEE 2017 IFIP/IEEE

Symp. Integrated Netw. and Serv. Management

(IM), pp. 54-62, May 2017.

[4] A. Khan, “Key characteristics of a container

orchestration platform to enable a modern

application,” IEEE Cloud Computing, vol. 4,

no. 5, pp. 42-48, 2017.

[5] H. Kang, M. Le, and S. Tao, “Container and

microservice driven design for cloud

infrastructure devops,” 2016 IEEE Int. Conf.

Cloud Eng. (IC2E), pp. 202-211, 2016.

[6] W. Lloyd, et al., “Serverless computing: An

investigation of factors influencing

microservice performance,” 2018 IEEE Int.

Conf. Cloud Eng. (IC2E), pp. 159-169, 2018.

[7] C. Pahl, et al., “Cloud container technologies:

a state-of-the-art review,” IEEE Trans. Cloud

Computing, p. 1, May 2017.

[8] E. Casalicchio and V. Perciballi, “Measuring

docker performance: What a mess!!!.” in Proc.

8th ACM/SPEC on Int. Conf. Performance Eng.

Companion, ACM, pp. 11-16, Apr. 2017.

[9] V. Agrawal, et al., “Log-based cloud

monitoring system for OpenStack,” 2018 IEEE

BigDataService, pp. 276-281, Mar. 2018.

[10] P. T. Endo, et al., “Minimizing and managing

cloud failures,” Computer, vol. 50, no. 11, pp.

86-90, 2017.

[11] The OpenStack Foundation, OpenStack Kolla

project, https://wiki.openstack.org/wiki/Kolla..

[12] Ansible, [ONLINE]. Available: https://www.an

sible.com.

[13] cGroups, [ONLINE]. Available: http://man7.or

g/linux/man-pages/man7/cgroups.7.html.

[14] cAdvisor, [ONLINE]. Available: https://github.

com/google/cadvisor.

[15] Prometheus, [ONLINE]. Available: https://pro

metheus.io.

[16] Grafana, [ONLINE]. Available: https://grafan

a.com.

응웬쫑당 (Trinh Nguyen)

Trinh Nguyen received his

B.Eng. degree in Computer

Networking from University

of Information Technology,

VNU-HCM, Ho Chi Minh

City, Vietnam, in 2012. He

has been pursuing the

Master's degree in ICT at Soongsil University

since Fall 2017. His research interests include

Software-Defined Networking, Network Function

Virtualization and Cloud Computing.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

www.dbpia.co.kr

	컨테이너 오픈스택을 위한 단대단 모니터링 시스템 설계
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. An End-To-End Monitoring System For Containerized Openstack
	Ⅲ. Experiment
	Ⅳ. Conclusion
	References

