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ABSTRACT

We present the optimal detection for the weak 

channel user of non-orthogonal multiple access 

(NOMA) with two users. This paper compares the 

optimal detection to the standard detection. It is 

shown that the performance of the optimal detection 

is better than that of the standard detection. In 

result, the optimal detection could be a promising 

scheme for the receiver of the NOMA weak channel 

user.
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Ⅰ. Introduction

Non-orthogonal multiple access (NOMA) has 

been recognized as one of promising multiple access 

techniques for fifth generation (5G) networks due to 

its superior spectral efficiency [1-5]. In NOMA, the 

user with the better channel condition employs 

successive interference cancelation (SIC) to remove 

the signals of users with the worse channel 

conditions, whereas the user with the weaker 

channel condition treats the other user’s signal as 

noise and decodes its own signal. In this paper, the 

optimal detection for the weak channel user of 

NOMA with two users is proposed, considering the 

statistical structure of the other user's signal. The 

paper is organized as follows. Section II defines the 

system and channel model. In Section III, the 

optimal detection is derived for the user with the 

weaker channel condition. In Section IV, the results 

are presented and discussed. The paper is concluded 

in Section V.

Ⅱ. System and Channel Model

Assume that the total transmit power is P , the 

power allocation factor is α  with 0 1α≤ ≤ , and 

the channel gains are h1  and 2h  with h h1 2> . 

Then Pα  is allocated to the user-1 signal s1  and 

P(1 )α−  is allocated to the user-2 signal s2 , with 

s s
2 2

1 2 1⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

E E . The superimposed 

signal is expressed by

x Ps Ps1 2(1 ) .α α= + − (1)

After the SIC is performed on the user-1 with the 

better channel condition, the received signal of the 

strong channel user is given by

1 1 1 1r h Ps nα= + (2)

where 1n ( )00, / 2N～N  is additive white 

Gaussian noise (AWGN). The notation ( ),μ ΣN  

denotes the normal distribution with mean μ  and 

variance Σ  and 0N  is one-sided power spectral 

density. The SIC is not performed on the user-2 

with the worse channel condition. Then the received 

signal of the weak channel user is given by

( )2 2 1 2 2

2 2 2 1 2

(1 )

(1 )

r h Ps Ps n

h Ps h Ps n

α α

α α

= + − +

= − + +
(3)

where n2 ( )00, / 2N～N  is AWGN.

Ⅲ. Optimal Detection

We consider the binary phase shift keying 

(BPSK), with s s1 2, { 1, 1}∈ + − . In the standard 
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receiver, the user with the weak channel condition 

treats the other user’s signal as noise and decodes its 

own signal. In this case, the decision region for 

2 1s = +  is simply given by

for all2 0,  .r α> (4)

The probability of error 
standard( )
eP  for all α  is 

calculated as

( )

( )

standard 2( )

0

2

0

(1 )1
2 / 2

(1 )1
.

2 / 2

e

h P
P Q

N

h P
Q

N

α α

α α

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞− + ⎟⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

(5)

where 

2

21
( )

2

z

x
Q x e dz

π

∞ −
= ∫ . 

Now, we derive the optimal receiver. The 

likelihoods 2 2| 2 2( | 1)R Sp r s = +  and 2 2| 2 2( | 1)R Sp r s = −  

are expressed as

( )

( )

( )

2 2 2 2 1 1
2

2 2 2 2 1

0

2
2 2 2 2

0

2
2 2 2 2

0

| 2 2 | , 2 2 1 1 1

(1 )

0

1 1 1

(1 )

0
(1 )

0

( | ) ( | , ) ( )

1

1 1
( 1) ( 1)

2 2

1 1
2

1 1
2

R S R S S S

r h Ps h Ps

N

r h Ps h P

N

r h Ps h P

N

p r s p r s s p s ds

e
N

s s ds

e
N

e
N

α α

α α

α α

π

δ δ

π

π

∞

−∞

− − −
−∞

−∞

− − −
−

− − +
−

=

=

⎛ ⎞⎟⎜× − + + ⎟⎜ ⎟⎜ ⎟⎝ ⎠

=

+

∫

∫

(6)

where Xp x( )  is the probability density function 

(PDF) and x( )δ  is the Dirac delta function. The 

optimum detection is made, based on the maximum 

likelihood, as

{ } 2 2
2

2 | 2 2
1, 1

argmax ( | ).R S
s

s p r s
∈ + −

= (7)

If 0.5α < , the one exact decision boundary, 

2 0r = , is obtained from

2 2 2 2| 2 2 | 2 2( | 1) ( | 1),R S R Sp r s p r s= + = = − (8)

which is

( )

( )

( )

( )

2
2 2 2

0

2
2 2 2

0

2
2 2 2

0

2
2 2 2

0

(1 )

0
(1 )

0
(1 )

0
(1 )

0

1 1
2

1 1
2

1 1
2

1 1 .
2
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N

r h P h P

N

r h P h P

N

r h P h P

N

e
N

e
N

e
N

e
N
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α α

α α

π

π

π

π

− − −
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− − +
−

+ − −
−

+ − +
−

+ =

+

(9)

Then the decision region for 2 1s = +  is given 

by

if2 0,  0.5.r α> < (10)

If 0.5α > , however, the optimum detection in 

(7) has the three decision boundaries, as follows; the 

first exact decision boundary, 2 0r = , is the same 

as that in case of 0.5α < . In order to obtain the 

second approximate decision boundary, first taking 

the logarithm to the both sides of the equation (9), 

we have

(11)

Then we can have the following equation, 
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( )

( ) ( )

( )

( ) ( )

2 2
2 2 2 2 2 2

0 0

2 2
2 2 2 2 2 2

0 0

2
2 2 2

0
(1 ) (1 )

2
2 2 2

0
(1 ) (1 )

(1 )

log 1

(1 )

log 1 .

r h P h P r h P h P

N N

r h P h P r h P h P

N N

r h P h P

N

e

r h P h P

N

e

α α α α

α α α α

α α

α α

+ − + + − −
− +

− − + − − −
− +

+ − −
−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
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− − −
−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

(12))

After some algebraic manipulations, the second 

approximate decision boundary, 2 2r h Pα , is 

obtained from

( )

( )

( )

2 2 2

0

2 2 2

0

2 2 2 0

4 (1 )

4 (1 )

4 (1 ) /

1log

1

r h P h P

N

r h P h P

N

r h P h P N

e

e

α α

α α

α α

+ −
−

− −
−

− −

+
=

+

(13)

where we use the fact that the negative exponentials 

are almost zeros. Similarly, the third approximate 

decision boundary is 2 2r h Pα− . Then, the 

decision region for 2 1s = +  is given by

if
2 2

2 2

0
,  0.5.

h P r

h P r

α

α

α

⎧⎪− < <⎪⎪⎪ >⎨⎪⎪⎪ <⎪⎩

(14)

The probability of error 
optimal( )
eP  for 0.5α <  is 

calculated as

( )

( )

optimal 2( )

0
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(1 )1
2 / 2
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2 / 2

e

h P
P Q
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15))

and for 0.5α > ,
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(16)

Note that for 0.5α < , 
optimal( )
eP  is exactly the 

same as 
standard( )
eP .

Ⅳ. Results and Discussions

Assume that the channel gain of the user-2 is 

2 0.9h = . The total transmit signal power to 

one-sided power spectral density ratio is 

0/ 50P N = . Then we define the signal-to-noise 

ratio (SNR) as 
2

2 0(1 ) /h P Nγ α− . The 

probabilities of error 
standard( )
eP  and 

optimal( )
eP  are 

shown in Fig. 1, with different power allocations, 

0 1α≤ ≤ . As shown in Fig. 1, The performance 

of the optimal detection is quite better than that of 

the standard receiver for 13.06 dBγ < , 

( 0.5α > ). The local maximum of 
optimal( )
eP  is at 

0.5α = , which is obtained from 

2 2

2 2

(1 )

(1 ) .

h P h P

h P h P

α α

α α

− − +

= − −
17))

On the other hand, the local minimum of 
optimal( )
eP  is at 4 / 5α = , ( 9.08 dBγ = ), which 

is obtained from 
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2 2

2 2

2 2

(1 )

( (1 )

(1 ) ) / 2.

h P h P

h P h P

h P h P

α α

α α

α α

− −

= − − −

− − +

(18)

We also show simulation results in Fig. 1, which 

are in good agreement with analytical results.

Fig. 1. Probabilities of error for the standard receiver and 
the optimum detection.

Ⅴ. Conclusion

We presented the optimal detection for the weak 

channel user of NOMA with two users. This paper 

compared the optimal detection to the standard 

detection. It was shown both in computer 

simulations and by analytical expressions that the 

performance of the optimal detection is better than 

that of the standard detection. In result, the optimal 

detection could be a promising scheme for the 

receiver of the NOMA weak channel user.
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