DEBEris

= 19-44-10-23 The Journal of Korean Institute of Communications and Information Sciences ’19-10 Vol.44 No.10
https://doi.org/10.7840/kics.2019.44.10.1956

VESH A 75 7HdstE $1g VNF ul=] 233}
ZH YNNI
Sal=ejelol’, § 9 4

A VNF Placement Optimization Framework for Network Function
Virtualization

Tri-Hai Nguyen®, Myungsik Yoo
e o

vE= 7] 7 (NFV)l‘— 7P 7les F vEST Auae) B4 ZERAYE %ﬁl Hlsk= =iz
thslolet VB Au]aes 71dsE & W sk=slel, S 7K YIES A 7% (VNF) flol 2ZEde] 74 &
A e d-e] Ve dAdeRs Y “:‘r VNF A= AR 7Fedt #5781 2 vlEe=
3ol "A 5AelA Auls 84l wel VNE Aljlel] High 24 $12] A3ke Ad9sh= wAlolok 7] VNF of
2 AR v e AR BRl 9 SRS AlskIR, RSkl VNF A 2Kk AlEEelE= ob o
FoIAA] gkt webd B mtellde ol 2 EHS A3 Al Aefsl= VNF uiA| AlElolElE Alokeel &
Algdlelel= ZiRkAkel d7slo] VNF wiz] odare]s 7idel] Zapdom 283 & gk

Key Words : NFV, VNF, Latency, Optimization, Simulator

ABSTRACT

Network Function Virtualization (NFV) is a paradigm that facilitates dynamic provisioning of network services
through virtualization technologies. In this vision, network services can be implemented by chaining a set of
functions, implemented as software components on top of virtualized general-purpose hardware, i,e., Virtual
Network Functions (VNFs). VNF placement is the problem of choosing the set of optimal locations for a chain
of VNFs according to the service request at the current characteristics of available computing resources and
network links. Existing works on VNF placement problem make their own models and solutions, but the standard
VNF placement optimization simulator is still not addressed. Therefore, we propose a VNF placement simulator
that consistently defines the inputs and outputs. The simulator helps the developer and researcher to focus more

on the VNF placement algorithm development.

% This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology
Research Center) support program (IITP-2018-2017-0-01633) supervised by the IITP(Institute for Information & communications
Technology Promotion).

+ First Author : Tri-Hai Nguyen, Department of ICMC Convergence Technology, Soongsil University, Seoul, Republic of Korea,

nguyentrihai @soongsil.ac kr, S:43]<]

Corresponding Author : Myungsik Yoo, School of Electronic Engineering, Soongsil University, Seoul, Republic of Korea,

myoo@ssu.ac.kr, “33]%]

= E 1 201907-138-D-RN, Received July 24, 2019; Revised August 8, 2019; Accepted August 8, 2019

1956

www.dbpia.co.kr

= UEN R 7 7PEEE 3 VNF WA HAst ZH 9=

I. Introduction

Network functions virtualization (NFV)“] is a
paradigm that presents several advantages in
comparison with traditional middle boxes, including
the flexibility for service provisioning and the
reduction of both operational (OPEX) and
capital(CAPEX)

virtualization techniques to provide network services

expenditures. NFV uses

through virtual devices running on generic hardware
(eg, x86 architecture). Thus, it is much simpler to
make new services available as well as to modify
and update existing services. There is no need for a
proprietary or specialized hardware equipment,
resulting in cost reduction and flexible service
provisioning.

In principle, all network functions and other
network elements can be considered for
virtualization. These virtualized instances are
referred to as Virtual Network Functions (VNFs) in
the context of NFV, which provide the same
functionalities as the corresponding physical
instances. Besides, VNFs can be instantiated,
executed and deployed by service providers in the
NFV Infrastructure (NFVI) environment which
provides the required resources such as compute,
storage, and network. To manage and orchestrate
these VNFs in NFVI, there is an element called
NFV Management and Orchestration (MANO). NFV
MANO can be further divided into three entities,
that is, Virtualized Infrastructure Manager (VIM),
VNF Manager (VNFM) and NFV Orchestrator
(NFVO). The NFV architecture is depicted in Figure
L.

Nevertheless, there are several challenges to the
practical use of NFV technology, including VNF
placement optimization problem [2][3]. For a set of
requested network services or service function
chains (SFC), the aim of VNF Placement is placing
the VNFs on suitable servers in the network
regarding the given objectives while satisfying
specific constraints. However, the existing works
focus on their proposed model and the source code
of the proposed models cannot be shared. Therefore,

we need an open-source standard or framework to

Virtual Network Functions (VNFs) NFV Management and

Orchestration (MANO)

‘ VNF ‘ ‘ VNF ‘ ‘ VNF ‘ ‘ VNF ‘
NFV Orchestrator
I (NFVO)
NFV Infrastructure (NFVI)
Virtual Virtual Virtual VNF Manager(s)
Compute Storage Network (VNFM)

Virtualization Layer

Virtualized
Compute Storage Network Infrastructure
Hardware Hardware Hardware Manager(s)
(VIM)

Fig. 1. NFV architecture

evaluate the algorithms for VNF placement
optimization problem.

In this paper, we propose a VNF placement
optimization simulator that places the SFC with the
inputs of sources, networks and SFC template. The
objective can be resource consumption minimization,
data rate required minimization, latency
minimization, or energy consumption minimization.
However, for simplicity, the objective is to
minimize the latency of the SFCs in the network in
this paper. The algorithms used for placement
process are greedy algorithm and random algorithm.
Greedy algorithm places VNFs at the closest node
(minimum latency) and connect with the shortest
paths. Random algorithm places VNFs at random
nodes and connect with shortest paths.

The remainder of this paper is organized as
follows. Section II introduces the proposed VNF
placement optimization simulation framework. The
implementation of the VNF placement optimization
simulator is shown in Section III. Finally, the

conclusion of this paper is presented in Section IV.

II. A VNF Placement Optimization
Simulator

In recent years, the problem of VNF placement
has been formalized and tackled by many authors,
leading to a variety of different optimization
problems and algorithms. So far, there is no generic
VNF placement optimization simulator that abstracts

the internals of these placement algorithms while

1957

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’19-10 Vol.44 No.10

consistently defining their inputs and outputs. To
overtake this issue, we propose a VNF placement
optimization simulator that standardizes the inputs
and outputs of the VNF placement optimization
problem.

Figure 2 provides an overview of the workflow of
the propose simulator. The inputs include the SFC
requests, networks, algorithm and objective. In this
paper, we choose the latency as the objective when
placing VNFs into the network. The objective can
be changed based on the need of service providers.

In term of algorithms, we adapt two common
algorithms, ie., greedy algorithm and random
algorithm. The greedy algorithm places VNFs at the
closest node (minimum latency) and connects with
shortest paths. Random algorithm places VNFs at
random nodes and connects with shortest paths.

Figure 3 shows the structure of the SFC
placement input. Each request must specify a
network, at least one service, and at least one
source. The underlying network G = (V; E) consists
of nodes (V) and edges (E). Nodes represent NFVI
PoPs at different

interconnected by edges. Additional, optional fields

geographical locations,
may specify the geographic locations or compute
capacities of nodes and the data rates or delay of
edges. For implementation, we suggest using the
GraphML format, which is used by the popular
datasets such as TopologyZoo [4] and SNDIlib [5]
that include realistic inter-PoP delays and bandwidth
limits. Network services consist of VNFs that are
interconnected by virtual links (vLinks). VNFs can
be annotated with VNF type, resource requirements,
etc. vLinks specify which VNFs are interconnected,

VNF placement
algorithms:
Greedy,
Random

VNF Placement VNF locations in

Simulator the network
Network services T
or SFCs requests
Optimization
Objective:
Latency

Fig. 2. VNF placement optimization simulator workflow

1958

SFC placement
request

Network

Service

Source

Nodes, Edges:
- Geo-position
- Resources
- Data rate capacity

VNFs, vLinks:

- Type of VNFs
- Resource request
- Maximum Latency

Location:
- Which node the
request come from

- Latency

Fig. 3. Placement input structure

thus defining the VNF forwarding graph. Each
vLink is unidirectional with a source and a
destination. To specify bidirectional connections,
two vLinks must be used. Sources, e.g., users or
sensors, are located at different nodes in the
network, request a service. Thus, the list of sources
contains the location and the requested network
service per source. Additionally, they can define
traffic characteristics, e.g., the data rate.

After receiving a placement request, placement
algorithms calculate a placement output. Figure 4
shows the structure of such a placement output,
maps VNF instances to network nodes and specifies
to which network service they belong to.

Since the number of VNF instances and their
(vLinks) may be decided
dynamically by placement algorithms, the placement

interconnections

response also needs to specify the source and
destination of these vLinks. This mandatory
information about VNF mapping and vLinks may be
extended by further annotations. For example,
vLinks may specify the calculated routes between
interconnected VNFs. Placement responses may
contain performance claiming about the calculated
placement. For instance, the expected delay between

connected VNFs and on the end-to-end service chain

Placement result

VNF instance vLink Performance result
- Source Latenc
- Location - Destination v
. - Data rate
- Service - Route

Fig. 4. Placement output structure

www.dbpia.co.kr

=/ UEYZ 715 7HEHE 913 VNF wiA] 43 Zlel=

is specified.
Il. Experiment

The source code of the VNF placement
optimization simulator is available online'™. The
VNF placement optimization simulator is written in
Python, running on Linux (i.e., Ubuntu 16.04)
environment. Some additional packages need to be
installed such as networkx, geopy, numpy. etc.

For realistic network emulation, the simulator
uses annotated geographical node positions from

31 o calculate the

real-world network topologies
distance between interconnected nodes and then
derives the corresponding edge delays. The
simulator can be run as follows.

First, the input of the simulator needs to be
specified. There are some examples in the ’inputs’
folder where the networks are the realistic network
topologies, the services define SFC requests and are
formatted as YAML file, the sources define the
location of users in the network.

After specifying the inputs, we can start the
placement process as following command:
‘python3 placement_simulator.py -- algorithm ALG
--network NETWORK --service SERVICE --sources
SOURCES*

Where:

‘--algorithm: the placement algorithm: ‘random°,
and ‘greedy".

‘--network‘: the network.

‘--service‘: network service or service function chain
(SFC) to be placed in the network.

‘--sources‘: is the source of the user. It can be one
or many sources in one file.

An example can be seen in Figure 5. The running

command is as follows:

nguyenh UYENHATI-PC:

nguyenhai@NGUYENHAR-PL: ~/unf-placement-simulator/ results/ greedy

File: Abilene-sfcl-source-2619-84-82 17-33-50.yaml

Gl nano 2.5.3

input:
algorithm: greedy
network: inputs/networks/Abilene.graphml
num_edges: 14
num_nodes: 11
num_sources: 1
num_vnfs: 3
service: inputs/services/sfcl.yaml
sources: inputs/sources/source.@.yaml
metrics:
delays:
- delay: 1
dest: vnf_ful
dest_node: pop2
src: vnf_user
src_node: pop@
- delay: 2
dest: vnf_web
dest_node: popd
srce vnf_ful
src_node: pop2
total_delay: 3

placement:
vlinks:

- dest_node: pop2
dest_vnf: vnf_ful
path:

- pop@

- popt

src_node: pop@
src_vnf: vnf_user

- dest_node: popd
dest_vnf: vnf_web
path:

- pop?

- popd

src_node: pop2

src_vnf: vnf_ful
vnfs:

- name: vnf_user
node: popd

- name: vnf_ful
node: pop2

- name: vnf_web
node: popd

ime: 2619-084-62 17-33-59

Fig. 6. An example of results of VNF placement process

‘python3 placement_simulator.py --algorithm greedy
—network inputs/networks/Abilene.graphml
--service inputs/services/sfcl.yaml —sources
inputs/sources/source.0.yaml‘. The output can be
seen at ’'results’ folder. An example of the results is

shown in Figure 6.

$ python3 placement_simulator.py --algorithm greedy --network inputs/net

wérks!Abllene.graphml --service inputs/services/sfcl.yaml --sources inputs/sources/source.@.yaml

Starting greedy placement

Placed vnf_user at pop@

Closest available node from popé: pop2z (shortest path length: 1)

Placed vnf fwl at pop2

Closest available node from pop2: pop9 (shortest path length: 2)

Placed vnf web at pop?9

Writing solution to results/greedy/Abilene-sfcl-source-2619-84-62_17-33-59.yaml

Fig. 5. An example of running VNF placement simulator

1959

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’19-10 Vol.44 No.10

IV. Conclusion

In this paper, a VNF placement optimization
simulator is proposed and implemented. It based on
Python and run on the Ubuntu environment. The
simulator provides the standard inputs and outputs
based on YAML model. By using this VNF
placement optimization simulator, the developers and
researchers can focus on developing their own

algorithms with different objectives.

References

[1] ETSI NFV, “Network function virtualisation:
An introduction, benefits, enablers, challenges
& call for action,” Introductory White Paper,
Issue 1, SDN & OpenFlow World Congr.,
Darmstadt, Germany, Oct. 2012.

[21 F. Bari, et al, “Orchestrating virtualized
network functions,” IEEE Trans. Network and
Service Management, vol. 13, no. 4, pp.
725-739, 2016.

[31 M. Mechtri, C. Ghribi, and D. Zeghlache, “A
scalable algorithm for the placement of service
function chains,” IEEE Trans. Network and
Service Management, vol. 13, no. 3, pp.
533-546, 2016.

[4] The Internet Topology Zoo. [Online] Available:
http://www.topology-zoo.org/dataset.html

[S1 SNDIib. [Online]. Available: http://sndlib.zib.de

[6] VNF Placement Optimization Simulator. [Onlin
e]. Available: https://anda.ssu.ac.kr/vnf-placem

ent-simulator/

1960

SHEZ|510| (Tri-Hai Nguyen)
Tri-Hai Nguyen received his
B.S. degree in computer

science from the University

of Information Technology,

P Ho Chi Minh City, Vietnam,

§\ in 2015 and M.Eng. degree

g in information and
communication technology from Soongsil

University, Republic of Korea, in 2017. He is
currently pursuing the Ph.D. degree in information
and communication technology at Soongsil
University, Seoul, Republic of Korea. His research
focuses on network function virtualization and
cloud computing.

[ORCID:0000-0002-2132-2290]

f M 4 (Myungsik Yoo)

Myungsik Yoo received his
B.S. and M.S. degrees in
electrical engineering from
Korea University, Seoul,
Republic of Korea, in 1989
and 1991, and his Ph.D. in
electrical ~ engineering from
State University of New York at Buffalo, New
York, USA in 2000. He was a senior research
engineer at Nokia Research Center, Burlington,
Massachusetts. He is currently a professor in the
school of electronic engineering, Soongsil
University, Seoul, Republic of Korea. His research
interests include visible light communications,
sensor networks, Internet protocols, control, and
management issues.

[ORCID:0000-0002-5578-6931]

www.dbpia.co.kr

	A VNF Placement Optimization Framework for Network Function Virtualization
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. A VNF Placement OptimizationSimulator
	Ⅲ. Experiment
	Ⅳ. Conclusion
	References

