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데이타 인 가속화 기술들에 한 기술 동향  망

김 용 근

A Technical Trend and Prospect of Data Plane Acceleration 

Technologies

Yongkeun Kim

요   약

네트워크 트패픽은 폭발 으로 증가해왔고, 이의 증가는 계속될 것으로 상된다. 이러한 네트워크 요구사항을 

맞추기 해, 10 Gbps, 40 Gbps 혹은 그 이상의 높은 역폭을 갖는 NIC들이 개발되어 사용되고 있다. 그러나, 

이러한 고 역폭 NIC들로부터의 트래픽이 범용 운 체제를 탑재한 시스템에서 히 처리된다는 보장은 없다. 

이는 범용 운 체제가 네트워크에 특화된 환경이 아닌, 일반 컴퓨  환경을 해 개발되었기 때문이다. 이런 고

역폭 요구와 운 체제의 처리능력 사이의 차이를 해소하기 해, 범용 운 체제 기반에서 많은 고속 패킷 처리 기

법들과 데이타 인 가속화 기술들이 제안되었고 구 되어 왔다.  본 논문은 범용 운 체제 (리 스) 기반에서

의 패킷처리와 문제 들을 체크한 후, 다양한 고속패킷처리 기법들에 해 조사하고, 이 고속 패킷처리 기법들을 

이용한 데이타 인 가속화 기술들에 해 고찰한다.    
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ABSTRACT

The network traffic has been exponentially grown and it is expected that the growth will continue. To meet 

the market requirements, high bandwidth NICs with 10 Gbps, 40 Gbps or even more have been developed and 

widely used. However, there is no guarantee that the traffic from the high bandwidth NICs can be properly 

processed in a system with general purpose operating systems, because the operating systems have been 

developed for general computing not for network centric. To fill the gap between high bandwidth requirement 

and operating system’s processing capability, many fast packet processing techniques and data plane acceleration 

technologies have been proposed and implemented upon general purpose operating systems, especially Linux. In 

this article, after checking the packet processing of general purpose operating system, focusing on Linux, and its 

issues, then, various techniques for fast packet processing are investigated. It, then, reviews the different types of 

data plane acceleration technologies with the packet processing techniques. 
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Ⅰ. Introduction

The required network bandwidth has been 

increased drastically because more and more devices 

are connected to network and applications require 

more and more bandwidth. The network equipment 

suppliers need to support those bandwidth 

requirements by providing with higher performance 

equipment periodically. Traditionally, network 

equipment suppliers have used their own proprietary 
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hardware and software to perform specific network 

purposes, because it was likely a feasible way for 

them to meet market requirements, competing 

against other vendors, and there were little common 

hardware platforms to use. It can give them their 

own specialties beating competitors and dominating 

market, however, it also increases the development 

and manufacturing costs, inflexibilities in terms of 

new hardware and software development, and 

difficulties to meet time-to-market while the market 

requires quicker service launch.

However, this trend has been changed for more 

than last decade, as the general purpose processors 

have been getting more processing capabilities and 

more network features because networking became 

one of essential features even in pure computing 

systems. Moreover, general purpose operating 

systems, such as Linux, already have enough 

networking protocol stacks. More and more network 

vendors have started to develop their own equipment 

using the general purpose operating systems on top 

of the general purpose processors. It allows the 

vendors to do rapid developments in timely manner, 

reducing hardware development cost and schedule, 

letting them focus on their own software 

development with flexibilities, and supporting proper 

packet processing performance required from the 

market. Even in a data center or cloud, the network 

traffic processed by single server is getting higher 

with high bandwidth NICs (Network Interface 

Cards). 10 Gbps (Giga-bit per second) is getting 

popular and 25/40 Gbps even 100/200 Gbps NICs 

are available in the market.

The issue is the growth of NIC’s processing 

bandwidth is becoming faster than the CPU’s 

(Central Processing Unit), so, the question would be 

whether a general purpose operating system can 

process the traffic from those high-speed NICs or 

not, as its network stack is conceived for general 

purpose communications rather than high-speed 

networking applications. It turned out that the 

operating system network stack can hardly support 

multiple 10 Gbps interface packet processing at line 

rate, through many experimental studies so far
[1,2,3]. 

To overcome the hurdle, various techniques and 

technologies have been proposed and implemented.

In this article, after checking the packet 

processing in a standard operating network stack 

focusing on Linux in Section II, the various 

techniques to reduce the performance bottlenecks are 

reviewed in Section III. The current status and 

activities of DPA (Data Plane Acceleration) 

technologies are reviewed and described in Section 

IV, with conclusion in Section V.

Ⅱ. General Packet Processing and Its 
Issues

This section describes the general packet 

processing in a standard operating system, Linux, 

and its issues in a performance perspective.

2.1 General packet processing in Linux
The most commonly used operating systems 

provide a network stack generally focusing on 

compatibility rather than performance. As Linux has 

been widely used for both of network vendors and 

general computing area, this article uses Linux as a 

reference of operating system unless others are 

specified. 

Linux network stack follows an interrupt-driven 

basis as typically below and described in Fig. 1
[4].

1) Each time a new packet arrives into the 

corresponding NIC, this packet is attached to a 

descriptor in a NIC’s receiving (RX) queue, which 

is typically circular and referred as rings. This 

packet descriptor contains information regarding the 

memory region address where the incoming packet 

is copied via a DMA (Direct Memory Access) 

transfer. 

2) After DMA the packet from NIC to the DMA 

memory region, RX interrupt is raised and the 

corresponding interrupt software routine is launched 

and copies the packet from the DMA memory 

region into a local kernel packet buffer (referred as 

sk_buff structure in Linux). Once the copy is made, 

the packet descriptor is released so that it can be 

used for receiving new packets.

With NAPI (New Application Programming 

Interface supported by Linux kernel 2.6 or higher), 

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

44

그림 1. 리 스 NAPI RX 흐름[4]
Fig. 1. Linux NAPI RX scheme[4]

when the RX/TX (Receiving/Transmission) interrupt 

arrives, its NAPI aware interrupt routine schedules 

the execution of a poll function, disabling future 

similar interrupts. The poll function checks if there 

are any packets available, and copies and enqueues 

them into the network stack if ready, without 

waiting to an interrupt. The same poll function, 

then, will reschedule itself to be executed in a short 

future (i.e, without waiting to an interrupt) until no 

more packets are available. If there are no more 

packets to process, the corresponding interrupt is 

activated again. NAPI compliant drivers can drop 

traffic at NIC level, without unnecessary work (i.e, 

copying the packets into the kernel packet buffer as 

NAPI unaware drivers, previous to kernel 2.6, drop 

the packet in kernel level). These polling mode of 

NAPI is more CPU consumer than interrupt-driven 

when the network load is low, but, it shows less 

cost with heavy network load.

3) The kernel packet buffer structure with the just 

received packet data is pushed into the system 

network stack for protocol processing. The packet in 

the kernel packet buffer is, then, copied to user 

applications for further processing.

2.2 Issues of the general packet processing
[5] describes the factors affecting to packet 

processing mostly in hardware perspective, which 

are inadequate utilization of CPU capacity, interrupt 

overhead with possibility of interrupt livelock, 

limited bus bandwidth, RAM (Random Access 

Memory) latency, and I/O (Input/Output) latency. 

NAPI shows better interrupt handling for interrupt 

storm as it can happen when high-speed NICs get 

short packets at line rate. However, it is not enough 

to overcome the performance challenge in 

high-speed NICs because there are many other 

architecture problems in software perspective. More 

detailed factors in software perspective are 

described
[4] as below.

Per-packet allocation and deallocation of 

resources. Every time a packet arrives to the system 

via an NIC, memory resource for a packet descriptor 

(and a kernel packet buffer) has been allocated and 

de-allocated. Its cost is significant especially for 

high performance packet processing. The kernel 

packet buffer (sk_buff) related operations consume 

63.1% of CPU power in the reception process of a 

64B packet
[6]. The buffer allocation and 

de-allocation take near 1,200 and 1,100 cycles 

respectively
[7].
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Serialized access to traffic. Thanks to multiple 

hardware RSS (Receiver Side Scaling) queues that 

can distribute the traffic using a hardware-based 

hash function, the receiving process can be 

parallelized by assigning each RSS queue to a 

specific core. However, the kernel network stack 

merges the packets at a single point for layer 3/4 

analysis. It causes a bottleneck for N:1 mapping and 

user space process can not get packets from a 

specific RSS queue. It affects to the performance 

degrade, loosing parallel processing benefits at the 

driver level.

Multiple data copies from driver to user space. 

There are multiple data copies in the packet 

processing, from DMA memory region to kernel 

packet buffer and from the kernel packet buffer to 

user space applications, understanding single data 

copy consumes about 500 to 2,000 CPU cycles per 

packet depending on the packet size
[7].

Context switching between kernel and user 

space. The context switching is required to traverse 

between user space and kernel space, caused by 

system calls for packet processing. It consumes up 

to 1,000 cycles per packet
[7].

No exploitation of memory locality. There are 

always possibilities for cache misses and their cost 

is significant (13.8% of CPU cycles in reception of 

64B packet
[6]). In NUMA (Non-Uniform Memory 

Access) architecture, which has become a reference 

for multi-processor architecture, the memory locality 

is more important as it affects to both cache misses 

and longer memory latencies (for example, when a 

processor accesses to a memory region which 

belongs to another processor).

Ⅲ. Techniques for Fast Packet Processing 

There have been many proposed and implemented 

techniques to enhance the packet processing 

performance in considerations of the issues specified 

in Section II, along with operating system’s kernel 

itself.  In this section, these techniques are explained 

in software and hardware approaches.

3.1 Software based approaches
For fast packet processing, most of the techniques 

are software based because the general purpose 

operating systems have not been designed for fast 

packet processing and its enhancements are mostly 

related to the operating system’s and software I/O 

processing. These have been researched and 

specified in many studies
[1-7].

1) Kernel bypass. One of the ways to achieve fast 

packet processing is to bypass the kernel and to let 

user space applications handle the packets directly 

from NICs as the kernel itself is the main bottleneck 

in architectural perspective even with certain 

enhancements. With kernel bypass, the user space is 

responsible for implementing the rest of the network 

stacks, meaning the user space must implement the 

TCP/IP (Transmission Control Protocol / Internet 

Protocol) protocols suite and provide interfaces for 

applications to access messages carried over by the 

protocols. This scheme became the main stream of 

data plane accelerations and there are many open 

societies and technologies to achieve it, which will 

be explained more in Section IV.

2) Zero-copy. In typical Linux network packet 

processing by kernel, it shows at least two packet 

copies to deliver to user space applications (from 

ring buffer to kernel packet buffer, then, from the 

kernel packet buffer to the applications) unless the 

packets are dropped in some reasons or forwarded to 

other NIC interfaces (for routing application for 

example). Mapping the kernel packet memory region 

to user space can provide user space applications 

with the access to packets without the additional 

copy from kernel packet buffer to user applications. 

It is already implemented in the current Linux 

kernel as a raw socket with RX_RING/TX_RING 

socket option
[4]. This same concept can be applied 

for DMA memory region to kernel. As most of data 

plane acceleration technologies use kernel bypassing, 

the zero copy technique from DMA memory region 

to user space applications has been used.  In kernel 

bypass operation, it can be achieved by arranging 

for a buffer pool to reside in a shared region of 

memory visible to both NICs and user space 

software. 
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3) Pre-allocated packet buffers. It consists of the 

pre-allocation of all memory resources required for 

packet processing (data and meta-data (descriptor)), 

to reduce the per-packet memory allocation 

overhead. Also, when a packet has been processed, 

its memory resources are not released to the system 

but re-used for new incoming packets.

4) Parallel direct paths. Direct parallel paths 

between RSS queues and applications need to be 

processed to solve the serialized access to traffic for 

layer 3/4 analysis. It may achieve the best 

performance when a specific core is assigned both 

for taking packets from RSS queues and forwarding 

them to the user space. It requires certain 

modifications of the data exchange between kernel 

space and user space in Linux.

5) Batch I/O processing. It groups packets into a 

buffer and processes them to kernel or user memory 

in groups called batches. It reduces the number of 

system calls and the consequent context switchings, 

and mitigates the number of copies. It amortizes 

per-packet processing overhead. However, it 

increases the latency and jitter, and may cause 

timestamp inaccuracy because packets have to wait 

until a batch is finished or a timer expires. 

6) Forward pre-fetching. To reduce cache misses, 

the driver may pre-fetch the next packet while the 

current packet being processed. The idea is to load 

the memory locations, which will be likely used in 

a near future, into processor’s cache in advance for 

faster access when required.

7) Affinity. Memory affinity is for a process to 

allocate/use memory assigned to the processor in 

which it is being executed, to exploit memory 

locality. CPU and interrupt affinity is also important 

as it is more likely to find packets in a local cache 

if previously these data have been received by an 

interrupt handler assigned to the same core.

8) Huge page support. In modern CPU 

architectures, memory is managed as pages, which 

are virtually and physically contiguous blocks of 

memory with a standard page size of 4KB (Kilo 

Bytes). When an application is run, the page 

addresses for accessing memory locations need to be 

translated from the virtual to the physical. To 

improve performance, the most recently used for the 

translation is kept in a cache, called TLB 

(Translation Lookaside Buffer). As each page 

occupies an entry in the TLB, the bigger page size 

the less cache misses. Intel-64 architecture can 

support 1 GB (Giga Byte) page size in 64-bit 

addressing mode, along with 4 KB and 2 MB (Mega 

Byte) page sizes, so, supporting this huge page size 

takes an advantage of less cache misses, resulting in 

faster packet processing.

9) Lockless programming. Locking is a 

conventional mechanism for programming in 

multi-process environment, to synchronize the access 

to a resource. Although it is one of the simplest 

ways to synchronize, it also shows many 

disadvantages, such as contention, locking overhead, 

lack of composability, priority inversion, convoying, 

etc. These issues directly impact on the performance 

of packet processing, so, for faster packet 

processing, programming and operations in lockless 

or in a way to reduce locking are necessary.

10) Hardware multi-queue support. Most of 

modern NICs can process packets in multiple 

hardware queues, which prove very useful not only 

for load balancing and dispatching but also for better 

I/O performance especially in multicore systems. For 

example, RSS hashes some pre-determined packet 

fields to select a queue, while queues can be 

associated with different cores. In this way, traffic 

from a single NIC can be distributed among 

different cores. It is not pure software solution, but, 

as it is a part of commodity hardware typically used 

with the existing software techniques above, this 

article regards it as a part of software based.

3.2 Hardware based approaches
There are two main streams currently used for 

fast packet processing techniques in hardware 

perspective, which are GPU (Graphics Processing 

Unit) or FPGA (Field Programmable Gate Array) 

based.

1) GPU based processing. The GPUs offer 

extreme thread level parallelism, while CPUs 

maximize instruction-level parallelism. In general, 

GPUs are very well suited for packet processing 
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그림 2. DPDK 유무에 따른 리 스커 [10]
Fig. 2. Linux kernel with / without DPDK[10]

applications as they offer data-parallel execution 

model. It can posses thousands of processing cores 

and they adopt single-instruction, multiple thread 

(SIMT) execution model where a group of threads 

execute concurrently
[3,8]. 

2) FPGA based processing. The FPGAs have a 

massive amount of parallelism built-in because they 

posses millions of LEs (Logic Elements) and 

thousands of DSP (Digital Signal Processing) 

blocks. However, they have an increased 

programming complexity which is the main 

challenge for using an FPGA as an accelerator. 

There are HLS (High-Level Synthesis) tools that try 

to overcome this problem by allowing to program 

FPGAs in high-level programming languages
[3].

Ⅳ. Technologies for Data Plane 
Acceleration 

There have been lots of activities and committees 

for acceleration of data plane performance since 

early 2000. This section reviews and summarizes 

most of well known approaches. 

4.1 DPDK (Data Plane Development Kit)
One of the most widely used technologies is 

called DPDK, which was initiated by Intel Corp. in 

2010 and became a fully open-source project. The 

open-source committee was established at DPDK.org 

in 2013 and has facilitated the continued expansion 

of the project. It consists of libraries and drivers, 

also known as PMDs (Poll Mode Drivers), to 

accelerate packet processing workloads running on 

the variety of CPU architectures, including x86, 

POWER (Performance Optimization With Enhanced 

RISC (Reduced Instruction Set Computer)) and 

ARM (Advanced RISC Machines) processors, 

mostly in Linux user space (packaged in Fedora, 

Ubuntu, Debian, RedHat, etc), with a FreeBSD port 

available for a subset of DPDK features. It is 

licensed under the Open Source BSD (Berkeley 

Software Distribution) License
[9]. This libraries and 

drivers abstract away the low-level implementation 

details, providing flexibility as each vendor 

implements its own low-level layers. DPDK has 

been getting more popular in recent years, in 

collaboration with many open-source projects, such 

as OVS (Open vSwitch), ODP (Open Data Plane), 

OFP (Open Fast Path), vDPA (vhost Data Path 

Acceleration), OPNFV (Open Platform for Network 

Function Virtualization), etc. 

The basic concept is to let user space applications 

process packets without involving Linux kernel 

network stack (which is the main bottleneck for 

packet processing performance), communicating 

directly with networking device described in Fig. 

2
[10]. In Linux network processing (left side of Fig. 

2), it separates network packet processing routines 

from user applications, using the existing routines in 

kernel. When applications in user space send/receive 

packets, the packets are processed in kernel network 

stack along with NICs using interrupts. This 

approach can give some benefits for application 

developers as it makes the developers to be free 

from the network packet protocol processing, letting 

the kernel process them instead. However, the 

switching between kernel mode and user mode 

needs to be done for packet processing via system 

calls, and the cost of it is not trivial. Also, there are 

other costs for interrupt processing of incoming 

packets from NICs and data copying from the kernel 

to user space. These overheads are serious especially 

for applications requiring high packet processing 
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그림 3. DPDK 구조
Fig. 3. DPDK architecture 

그림 4. DPDK 동작 모드
Fig. 4. DPDK operational modes

performance at line rate. One of the ways to 

minimize this overheads is to let all the packet 

processing be done in user space instead of kernel 

space, by bypassing the kernel and it is where many 

data plane acceleration technologies come, including 

DPDK. 

The basic architecture is described in Fig. 3, 

consisting of EAL (Environment Abstraction Layer) 

and data plane libraries. The data transfer is done by 

PMDs in direct communications with NICs by 

bypassing kernel and user space applications use the 

libraries instead of expense system calls. The EAL 

provides a generic interface that hides the 

environment specific from the applications and 

libraries, including the services, such as DPDK 

loading/launching, core affinity/assignment 

procedures, system memory reservation, trace and 

debug functions, spinlocks and atomic counters, 

CPU feature identification, interrupt handling, alarm 

functions, etc
[11]. The PMDs are designed to work 

without interrupt-based processing mechanisms, 

consisting of APIs (Appllication Programming 

Interfaces)  and provided through BSD drivers 

running in user space to configure the devices and 

their respective queues. It can access the RX and 

TX descriptors directly without any interrupts to 

quickly receive, process and deliver packets to user 

applications
[11]. There are about 39 supported NIC 

drivers for both of native and virtual as of today, 

including 1 Gbps, 10 Gbps, 40 Gbps and 

paravirtualized driver called virtio. Also, many 

hardware accelerators for baseband, crypto, 

compression, etc., are supported. 

The core libraries are ring manager (librte_ring) 

for providing a lockless multi-producer, 

multi-consumer FIFO (First In First Out) API in a 

finite size table, memory pool manager 

(librte_mempool) for allocating pools of objects in 

memory, buffer manager (librte_mbuf) for 

managing buffers that may be used by DPDK 

applications to store message buffers, timer manager 

(librte_timer) for timer service to DPDK execution 

units with the ability to execute a function 

asynchronously
[11]. Additionally, the framework 

includes NUMA awareness to avoid expensive 

memory operations across memory nodes and huge 

pages to optimize physical-to-virtual page mappings 

within the CPU’s TLB.

It supports two operational modes, 

run-to-completion and pipeline, described in Fig. 4. 

In run-to-completion model, all resources must be 

allocated prior to calling data plane applications, 

running as execution units on logical processing 

cores. In Fig. 4, a specific port’s RX descriptor ring 

is polled for packets through an API. Packets are 

then processed on the same core and placed on a 
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그림 5. ODP 구조[13]
Fig. 5. ODP architecture[13]

port’s TX descriptor ring through an API for 

transmission.  Each logical core assigned to the 

DPDK executes a packet processing loop with 

retrieving incoming packets, processing each 

received packet one at a time, and sending pending 

outgoing packets
[11]. Pipeline model may also be 

used by passing packets or messages between cores 

via rings. This allows work to be performed in 

stages and may allow more efficient use of code on 

cores. One core polls one or more ports’ RX 

descriptor rings through an API. Packets are 

received and passed to another core via a ring. The 

other core continues to process the packets which 

then may be placed on a port’s TX descriptor ring 

through an API for transmission. Some logical cores 

may be dedicated to the retrieval of incoming 

packets and other logical cores to the processing of 

previously received packets
[11]. 

DPDK has considered lots of things to enhance 

packet processing, not only for reducing the kernel 

bottlenecks mentioned earlier, but also for handling 

memory and I/O operations in a deliberate manner.  

It supports 1) huge page (to use bigger page such as 

2MB or 1 GB) to reduce TLB misses, 2) NUMA 

awareness DPDK APIs are structured around for 

every operation, 3) simple way for DMA address 

translation, 4) awareness of underlying physical I/O 

memory area with IOMMU (I/O Memory 

Management Unit), 5) shared memory 

implementation for multiple processes not to require 

any address translations, and 6) optimized memory 

pools for high performance
[12].

DPDK itself doesn’t include Layer 2 to 4 

protocol stack but a framework with layer 1 

implementation (i.e, device driver level), which 

means TCP/IP stack should be implemented on top 

of it to process network packets and the way of 

protocol stack implementation affects to the 

performance significantly. The network vendors who 

want to use DPDK for their product development 

have two options, to develop the protocol stack by 

themselves (or outsourced) with or without open 

source protocol stacks or to license commercial 

protocol stack from protocol stack vendors. 

There are some open issues for DPDK. Though 

DPDK supports NUMA awareness, if the packets 

are forwarded to ports assigned to other cores, 

memory access by the other cores to the receiving 

core’s affects to the performance (lower than the 

ports assigned to the receiving core). Even layer 4 

stack (TCP) is implemented on top of DPDK, the 

applications, who want to use it with socket 

interface, may need to be modified as its behavior 

is likely different from that of typical Linux socket 

interface. There have been tries to have the same 

socket interface behavior in DPDK user space, but, 

so far, its performance looks not good enough.

Initially, it focused on Intel x86 processors, but, 

after becoming open source, its supporting scope is 

getting wider and many other open committees use 

it as one of their architectures. Thanks to its high 

performance, many network vendors have developed 

their products based on DPDK and they are already 

in commercial phase, so, it can be regarded as a 

mature one. 

DPDK is one of the most active open source 

projects, releasing new version every three month 

with thousands patches from hundreds people and 

adding more libraries. Its use is becoming a de-facto 

standard in the high performance packet processing 

area.

4.2 ODP (Open Data Plane)
ODP is to provide a common set of APIs for 

application portability across diverse range of 

networking platforms (SoCs (System on Chips) and 

servers) that offer various types of hardware 

acceleration
[13], letting hardware vendors develop its 

actual implementation for what and how the APIs 

are realized, pictured in Fig. 5. After project 

launching in 2013, ODP implementations exist for 
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그림 6. ODP 패킷 흐름 개요[14]
Fig. 6. ODP packet flow overview[14]

ARM, MIPS (Microprocessor without Interlocked 

Pipeline Stages), POWER, x86 and proprietary 

SoCs. 

ODP application packet flow is described in Fig. 

6. After arriving and being received (RX) from a 

network interface represented by a logical port 

(called PKTIO), packets go either directly to 

Queues that are polled by ODP threads 

(odp_thread), or can pass through Classification to 

parse packet and apply pattern matching rules then 

are sorted into Queues that represent individual 

flows. These queues can then be dispatched to 

application threads (odp_thread in Fig. 6) via 

Scheduler, who is responsible for selecting and 

dispatching one or more events to a requesting 

thread. Threads, in turn can invoke various ODP 

APIs to manipulate packet contents prior to 

disposing of them. For output processing, packets 

make by directly queued to a PKTIO output queue 

or else they may be handed to Traffic Manager for 

controlling traffic shaping and processing 

programmatic quality of service before winding up 

being transmitted (TX). Output interfaces may 

operate in loopback mode, in which case packets 

sent to them are re-routed back to the input lines for 

“second pass” processing. For example, an incoming 

IPSec (Internet Protocol Security) packet cannot be 

properly classified (beyond being IPSec traffic) until 

it is decrypted. Once decrypted and its actual 

contents made visible, it can then be classified into 

its real flow
[14]. Only the odp_threads have 

application logics and everything else is provided by 

the ODP framework and available for use by any 

ODP application.

ODP has released production-ready versions since 

2016 and ODP-Linux and ODP-DPDK have been 

implemented as references. Both of DPDK and ODP 

work at device driver level and don’t have protocol 

stacks, so, some commercial software vendors offer 

their protocol stacks on top of ODP layer. ODP is 

a member of OFP (Open Fast Path) who is also an 

open source committee for high performance TCP/IP 

stack. As it provides a common set of APIs for 

application portability, there should be optimized 

protocol stacks on top of it in order to achieve high 

performance communications.

4.3 OFP (Open Fast Path)
OFP

[15] is to create and develop an open source 

fast path TCP/IP stack, designed to run in Linux 

user space (called “fastpath”). OFP operates on top 

of ODP as a protocol stack, in collaboration with 

Linux kernel network stack (i.e, if the packets OFP 

can not handle probably due to not-implemented yet 

for example, the packets go to Linux kernel and let 

its network stack (called “slowpath”) handle it), 

running on ARM, x86 and MIPS and mainly 

contributed by Nokia, ARM and Enea. DPDK 

support can be made with ODP-DPDK integration 

layer. Its first version v1.0 was released in 

www.dbpia.co.kr



논문 / 데이타 인 가속화 기술들에 한 기술 동향  망

51

그림 7. OFP 시스템 구조[15]
Fig. 7. OFP system view[15]

December, 2015.

Its architecture is pictured in Fig. 7, consisting of 

network interface, ODP implementation, OFP 

libraries, user applications and Linux host system
[15]. 

At least one core need to be allocated for Linux 

system calls for slowpath processing using 

TUN/TAP (network TUNnel/network TAP) 

interface and more cores may be allocated for Linux 

host if there are lots of slowpath traffic. Other cores 

can be allocated to ODP for fastpath processing.  

All the packets in incoming or outgoing are 

processed by ODP, then, the packets are delivered to 

OFP or Linux host depending on the decision 

whether these can be processed in OFP or not. User 

Conf Code is for a management of ODP and OFP 

and User/Default Dispatcher is a dispatcher 

implementation that reads packets through the ODP 

APIs. The routing and ARP (Address Resolution 

Protocol) tables are synchronized between Linux 

host (slowpath) and OFP (fastpath) using Netlink 

API and system commands.

Its fastpath protocols consist of Layer 4 

(UDP/TCP (User Datagram Protocol/Transmission 

Control Protocol) termination, ICMP (Internet 

Control Message Protocol)), Layer 3 (ARP/NDP 

(Neighbor Discovery Protocol), IPv4/v6 (IP version 

4 / version 6) forwarding & routing, IPv4 

fragmentation and reassembly, VRF (Virtual Routing 

and Forwarding) for IPv4, IGMP (Internet Group 

Management Protocol) and multicast, basic IPSec), 

Layer 2 (Ethernet, VLAN (Virtual Local Area 

Network)) and VxLAN (Virtual extensible LAN) 

and GRE (Generic Routing Encapsulation) tunneling. 

It also supports CLI (Command Line Interface) and 

configuration file.

The packet processing is handled through a series 

of self-contained processing functions (layer 2/3/4 

protocols) as single thread run-to-completion 

environment. Thanks to its architecture (assigning 

cores for OFP dedicatedly in run-to-completion 

mode), its performance can be scaled up linearly by 

adding processing cores, showing much more 

performance than Linux kernel. In facts, it 

architecture, concept and operation behavior are very 

similar with 6WINDGate
[16], the commercial version 

of network stack on top of DPDK.

It is still in incubation phase, meaning it may 

require certain customizations and optimizations to 

use it for commercial purpose. One of key 

contributors, Enea, does professional services for 

vendors who want to use it commercially. There are 

competitions against commercial stack vendors who 

have similar architecture and more mature products.

4.4 FD.io
FD.io (Fast Data input/output), as a Linux 

Foundation project, is a community with multiple 

projects in software-based packet processing towards 

the creation of high-throughput, low-latency and 

resource-efficient IO services suitable to many 

processor architectures (x86, ARM and PowerPC 

(Performance Optimization With Enhanced RISC - 

Performance Computing) and development 

environments (bare metal, VM (Virtual Machine), 

container)
[17], founded in 2016. It uses DPDK for 

device driver layer to get packets to and from 

(v)NICs ((virtual) NICs) and threads/cores. Vector 

Packet Processing (VPP) library, donated by Cisco, 

is a key as the code in VPP is already running in 

commercial products and is modular, allowing easy 

plug-in without major changes to the underlying 

code basis and running in user space of Linux. 

VPP is a data plane, consisting of a set of 

forwarding nodes arranged in a directed graph and a 

supporting framework. The framework has all the 
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그림 8. VPP 구조:패킷처리 그래 [18]
Fig. 8. VPP architecture: packet processing graph of 
nodes[18]

그림 9. Netmap 모드에서, NIC ring들은 호스트스택과 연
결이 단 되며, netmap API를 통해 패킷을 교환된다. 호스트
스택과의 통신은 두 개의 추가 인 ring들이 사용된다[19].
Fig. 9. In netmap mode, the NIC rings are disconnected 
from the host network stack and exchange packets through 
the netmap API. Two additional netmap rings let the 
application talk to the host stack[19].

basic data structures, timers, drivers (and interfaces 

to driver kits like DPDK), a scheduler which 

allocates the CPU time between the graph nodes, 

and performance and debugging tools, like counters 

and built-in packet trace. The input node polls (or 

interrupt driven) an interface's RX queue for a burst 

of packets. It assembles those packets into a vector 

or a frame per next node, e.g. it sorts all IPv4 

packets and passes those to the ip4-input node, the 

IPv6 packets into the ip6-input node and so on. 

When the ip6-input node is scheduled, it takes its 

frame of packets and processes them in a tight dual 

loop (or quad-loop) with prefetching to the CPU 

cache to achieve optimal performance. This makes 

more efficient use of the CPU cache by reducing 

misses, and scales efficiently for larger CPU caches. 

The ip6-input node pushes the various packets onto 

another set of next-nodes, e.g. error-drop if 

validation checks failed, or most typically 

ip6-lookup. The frame of packets moves like a train 

through the system until they hit the interface-output 

node and are shipped onto the wire, described in 

Fig. 8
[18].

FD.io is in collaboration with other open source 

projects, such as DPDK for network I/O layer, 

OPNFV FastDataStacks project using VPP as a data 

plane forwarding component. Also, apart from the 

main VPP project, there are several adjacent projects 

under the FD.io umbrella: Honeycomb (ODL 

(OpeDayLight) integration), CSIT (Continuous 

System Integration and Testing), NSH SFC 

(Network Service Header, Service Function 

Chaining), ONE (Overlay Network Engine), VPP 

Sandbox, TLDK (Transport Layer Development 

Kit), package management, TRex (low-cost high 

speed stateful traffic generator), hICN (hybrid 

Information-Centric Networking)
[18].

4.5 Netmap
Netmap has been suggested and implemented by 

Luigi Rizzo[19] in 2012, as a framework of fast and 

efficient packet I/O for both user space and kernel 

clients (programs, processes) without requiring 

custom hardware or changes to applications, 

showing 14.88 Mpps (Million packet per second) 

(i.e, the peak packet rate on 10Gbps) with one core 

(900 MHz). To achieve the high performance, it 

uses 1) preallocated linear and fixed size packet 

buffers when a device is opened, 2) removal of data 

copy costs (i.e, zero-copy transfer) by granting 

applications direct and protected access to packet 

buffers, 3) a lightweight metadata representation and 

4) support of useful hardware features. User space 

applications can dynamically switch NICs into 

netmap mode, described in Fig. 9, and send and 

receive raw packets through shared memory buffers. 

It has similar scheme with that of DPDK as user 

space applications can talk to NICs directly, 

however, [20] insisted that it has less performance 
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그림 10. 바닐라 PF_RING[26]
Fig. 10. Vanilla PF_RING[26]

than DPDK and requires more maintenance cost for 

NIC supports.

Netmap framework has been extended to 

virtualization supporting as ptnetmap
[21] and its 

successor ptnet[22]. Ptnetmap is a netmap based 

virtual passthrough solution, which is similar with 

hardware passthrough concept, but allowing 

complete independence from the hardware and 

regarding the networking port exported to virtual 

machines as a software port not a piece of hardware. 

This concept can give benefits for live migration as 

the virtual machines are not limited to a specific 

hardware. Ptnet is a paravirtualized device model, 

like virtio
[23]. It is based on netmap and its 

performance is comparable with that of virtio for 

traditional socket applications, having more 

portability
[22].

4.6 PF_RING 
PF_RING is a new type of network socket and 

user space framework that allows packet processing 

at high rates while providing consistent APIs for 

packet processing applications. It was developed by 

Luca Deri, a founder of ntop (www.ntop.org) with 

his paper
[24] and its enhancement[25] called PF_RING 

DNA (Direct NIC Access). PF_RING polls packets 

from NICs using Linux NAPI which copies packets 

to PF_RING circular buffer (“ring”), then, the user 

space applications poll the ring to read the packets. 

It can distribute the incoming packets to multiple 

rings simultaneously for multiple applications, 

described in Fig. 10
[26]. It consists of 1) kernel 

module for low-level packet copying to the 

PF_RING circular buffer, 2) user space SDK 

(Software Development Kit) for user space 

applications, and 3) PF_RING aware device driver 

for additional improvements in packet capturing. It 

supports zero copy operation (called PF_RING ZC 

which is a commercial version of PF_RING), 

supporting full 10Gbps line rate processing (14.8 

Mpps) with Xeon 2.5GHz. For the zero copy 

operation, packets are read directly from the network 

interface by bypassing the Linux kernel and the 

PF_RING kernel module. For this, NIC memory and 

registers are mapped into the user space, so the 

packet copy from NIC to DMA ring is done by NIC 

network process unit instead of NAPI. It is in 

similar position with that of DPDK at device driver 

level (i.e, doesn’t have protocol stacks), however, as 

DPDK has much bigger name at the moment, it may 

focus on vertical applications specialized in packet 

capture and traffic analysis.

4.7 XDP (eXpress Data Path)
XDP, driven by an open source project called IO 

Visor
[27] of Linux Foundation projects, is to 

accelerate the packet process inside kernel not 

bypassing it. The basic idea is not to replace the 

kernel stack but to provide simpler and faster 

alternative way in kernel, by kernel hooks using 

eBPF (extended Berkley Packet Filter: a highly 

flexible and efficient one in Linux kernel allowing 

to execute bytecode at various hook points in a safe 

manner. It can be executed at the lowest point of 

software stack) in collaboration with the existing 

kernel network stack.

The XDP packet process includes a kernel 

component that processes RX packet-pages directly 

out of driver via a functional interface without early 

allocation of kernel packet buffer (sk_buff) or 

software queues. Normally, one CPU is assigned to 

each RX queue, so, there is no locking RX queue, 

and the CPU can be dedicated to busy poll or 

interrupt model. BPF programs perform processing 

such as packet parsing, table lookups, 

creating/managing stateful filters, packet 

manipulation, etc
[27,28].  The packets may be 
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그림 11. XDP 패킷 로세서[28]
Fig. 11. XDP packet processor[28]

 

그림 12. 각 기술들간의 계 , 계  패킷흐름
Fig. 12. Hierarchy, relationship and packet flow of the 
technologies

dropped, forwarded possible with packet 

modification (for NAT (Network Address 

Translation) for example), or locally received by 

Linux kernel, described in Fig. 11.

XDP’s goal is to close the performance gap to 

kernel-bypass solutions (not intending to be faster 

than kernel-bypasses’), working in concert with 

Linux kernel stack along with all the benefits of 

BPF. It may not be used for most of network use 

cases, but for pre-stack processing (like filtering to 

support DDoS (Distributed Denial of Service) 

mitigation), forwarding and load balancing, batching 

techniques such as in software-based offloading like 

GRO (Generic Receive Offload), flow sampling / 

monitoring, etc.

Its performance has been evaluated in [29], which 

showed 24 Mpps with single core (while DPDK was 

43.5 Mpps), however, comparing to kernel bypass 

technologies, it insisted XDP has certain benefits 

such as keeping kernel security and management 

compatibility, utilizing existing kernel stack features 

as needed, providing a stable programming interface 

with transparency to applications.

To support fast delivery of raw XDP frames into 

user space, XDP can bypass the Linux kernel 

network stack via XDP_REDIRECT into a special 

BPF-map containing AF_XDP socket which is a 

new address family type. The PMD for AF_XDP is 

available in DPDK
[9]. 

The technologies mentioned from Section 4.1 to 

4.7 is described in Fig. 12, upon their hierarchy and 

relationship with packet flow. It is also specified in 

the Fig. 12 for the major techniques (kernel bypass, 

poll mode support, zero copy support, pre-allocated 

packet buffer and batch I/O processing) used by the 

technologies.

4.8 Other technologies
PacketShader[6] is a high-performance PC-based 

software router platform that accelerates the core 

packet processing with GPUs, developed by KAIST 

in 2011. It offloads computation and 

memory-intensive router applications to GPUs while 

optimizing the packet reception and transmission 

path on Linux. It uses GPU for data parallel 

execution because GPUs are widely used for 

high-performance parallel applications whose 

workloads require enormous computation cycles 

and/or memory bandwidth[30]. It optimizes the packet 

I/O in Linux with huge packet buffer (instead of 

allocating metadata and packet data for each packet 

reception, PacketShader pre-allocates two huge 

circular buffers with a large array for metadata and 

packet data, resulting in greatly reduction of the 

memory allocation/deallocation overhead for 

high-speed packet reception), batch processing, 

NUMA-aware data placement and multi-core CPU 

scalability, while operating GPU accelerated packet 

processing in user space of Linux with modification 

of Intel-based NIC (82598/82599) drivers. The 

drivers bypass the kernel network stack, delivering 

packet to user space GPU acceleration framework. It 

was demonstrated close to 40 Gbps throughput of 

packet forwarding for all packet sizes, with two 

Xeon X5550 2.66 GHz for CPU and two NVIDIA 

GTX480 cards for GPU[6].
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OpenOnLoad[31] is an implementation of TCP 

and UDP over IP which is dynamically linked into 

an application’s address space and granted direct 

access to accelerated network hardware. The 

network stack interposes network operations from 

the applications and enables them to be handled 

completely at user space. In so doing, it bypasses 

the operating system and significantly improves 

performance through the removal of disruptive 

events such as context switches and interrupts which 

otherwise reduce the efficiency by which a 

processor can execute application code
[31]. Solarflare 

Communications, Inc. has released its NICs, 

supporting application transparency with high 

performance. However, as it is a hardware based 

solution meaning their customers have to be 

equipped with the vendor’s NICs, the customer 

space is likely limited.

NetSlices
[32] is an operating system abstraction 

that processes packet in user space and enables a 

linear increase of performance with the number of 

cores. Spatial partitioning of hardware resources at 

coarse granularity is done in order to reduce 

interference and contention. Its APIs provide 

applications with fine-grained control of hardware 

resource. The streamlined path is also brought by 

NetSlice for packets to move between user space 

and kernel space. With spatial partitioning (i.e, 

allocating a RX/TX queue to specific core), network 

traffic is divided into “slices” and independent 

packet processing execution contexts allow 

parallelism and contention minimization. It requires 

a simple kernel extension which can be loaded at 

runtime to replace with conventional raw sockets. 

Contrary to most of other solutions, it does not take 

advantage of zero copy, but copies each packet once 

between the user space and kernel space, insisting it 

gains added portability and usability.

Sophos Ltd., a firewall and security company, 

presented their proposal and initial implementation 

for fast packet processing in Linux kernel, in 

NetDev 1.2[33]. It uses Netmap with enhanced 

networking stack along with pre-allocated rx/tx 

buffer, batch I/O capabilities and forward cache 

prefetching for fast packet processing in Linux 

kernel as Linux kernel already has the full network 

stack. It has implementation of fastpath networking 

stack in Linux kernel for high performance, letting 

the packets, which can not be processed in the 

fastpath networking stack in the kernel, be processed 

in normal Linux networking stack. It showed about 

5 times more processing than standard Linux stack 

for their firewall application.

Snabb was started in 2012 by a free software 

hacker, Luke Gorrie, providing direct access to the 

high performance NICs but in addition to that it also 

provides an environment for building and running 

network functions
[34]. It is a toolkit for developing 

network functions in user space mostly aimed for 

high performance networking with user space drivers 

for supported NICs, written in Lua, a high level 

programming language. It is composed of Engine 

(that runs network functions), Libraries (that ease 

of the development of network functions), Apps 

(reusable software components that generally 

manipulate packets) and Programs (ready-to-use 

standalone network functions). A network function 

in Snabb is a combination of apps connected 

together by links. The Snabb’s engine is in charge 

of feeding the app graph with packets and give a 

chance to every app to execute. The first Snabb 

applications are L2 VPN (Layer 2 Virtual Private 

Network), IPv6 translation, L7 (Layer 7) firewall, 

etc. It provides a way to develop network functions 

easily with high performance using user space 

drivers, but, still looks in limited market space.

OPNFV FastDataStack project[35]. OPNFV, a 

collaborative project under Linux Foundation, is a 

project and community that facilitates a common 

NFVI (Network Function Virtualization 

Infrastructure), continuous integration with upstream 

projects (such as OpenDaylight, OpenStack, 

Kubernetes, Ceph Storage, KVM (Kernel-based 

Virtual Machine), Open vSwitch, Linux, DPDK, 

FD.io, etc.), stand-alone testing tool sets, and a 

compliance and verification program for 

industry-wide testing and integration to accelerate 

the transformation of enterprise and service provider 

networks.  Goals include accelerating time to market 

for NFV (Network Function Virtualization) 
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solutions, easing operational burdens, and ensuring 

the platform meets the industry’s needs[36]. For data 

plane, OPNFV engages with OVS (Open vSwitch), 

FD.io and DPDK to address performance, scale and 

resiliency needs for carrier networks. There are lots 

of active projects under OPNFV and one of them is 

FastDataStacks. FastDataStacks was started in spring 

2016, to meet the requirements for high performance 

data plane stack in NFV and virtualized applications, 

by building solution stacks supplied by FD.io along 

with functionality for realizing application policies 

and controlling a complex network topology. The 

key components are VPP (as a network forwarder) 

and HoneyComb for dataplane management agent 

from FD.io, virtual machine controller from 

OpenStack, a network controller from OpenDaylight, 

and installation and test suits from OPNFV. The 

scenarios have been developed upon [OpenStack – 

VPP] and [OpenStack – OpenDaylight – VPP] 

with various features and functionalities. Its 

integration, configuration and test details are in [35].

NetFPGA
[37] is a project to develop open-source 

hardware and software for rapid prototyping of high 

performance network devices based on FPGA, 

started in 2007. There are three platforms available, 

NetFPGA-SUME, NetFPGA-1G-CML and 

NetFPGA-10G. A solution like NetFPGA SUME 

can reach the speed of upto 100 Gbps
[38], insisting 

the rapid prototyping can be done with its 

ready-made reference and modular hardware and 

software components as flexible building blocks. 

Smart NICs. One of the ways to accelerate the 

data plane processing is to hire additional hardware 

processing capability on top of standard NICs, 

providing certain functionalities and offloading them 

from the host system's CPU
[39], which is called as a 

smart NIC. Although the definition and supporting 

capabilities of NICs may be different from NIC 

vendors and researchers, it is becoming an emerging 

solution as another approach to address the 

limitations of the kernel network stack. The 

functionalities of smart NICs can be developed with 

ASIC (Application Specific Integrated Circuit), SoC 

or FPGA, whose choice depends on the use cases of 

the NICs
[40]. One of the examples for massive 

deployment in the cloud space is AccelNet, 

Microsoft's solution for offloading host networking 

to hardware using custom Azure smart NIC based 

on FPGA, and it showed 32 Gbps throughput with 

AccelNet (comparing it was 5 Gbps without it)
[41]. A 

smart NIC (it was called as hardware-assisted NIC 

in the paper) was used for 5G (fifth generation) PoC 

(Proof od Concept) by Intel Corp. and SK Telecom 

Co., Ltd., to offload virtual switching and tunnel 

endpoint termination (VLAN, VxLAN, GRE) for 

network overlays in KVM  virtualization 

environment
[42]. There have been many studies and 

architecture proposals to use smart NICs to offload 

network functions mainly targeting cloud area, such 

as UNO
[43], PANIC[44], AccelNet[41], etc.

Ⅴ. Conclusion 

Linux has been a most widely used operating 

system for networking, though it was initially 

developed for general computing. Most of network 

equipment vendors have used Linux as it is open 

source and it has been evolved continuously with 

lots of contributors’ efforts to integrate new features 

and solutions. That is why all of the solutions 

mentioned in this article have focused on Linux. The 

issue of general purpose operating systems, such as 

Linux, is that the throughput of the high bandwidth 

network interfaces, such as 10 Gbps, 40 Gbps or 

even more, can be hardly supported by the operating 

system’s network stack, because the operating 

system is originally designed for general purpose not 

network specific.  To resolve it, lots of studies and 

proposals have been conducted since early 2000.

DPDK has the biggest name in this area with lots 

of active contributors and users. The products based 

on DPDK solution are already commercially 

available with various forms, UTM (Unified Threat 

Management), mobile core equipment, router, etc. It 

can be, therefore, easily inferred that it will keep its 

position as one of main streams in this area for 

certain period of time.

Some solutions are based on hardware, like GPU 

or FPGA, however, the majority is based on 

software upon commodity hardware though there 
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may be some limitations of software based solutions 

especially on NICs for whether or not to be 

supported. Although there are some issues in SDN 

(Software Defined Network) in terms of 

expandability and centralized architecture
[45], it is 

expected that the way to SDN/NFV will be 

continued. In this environment, software solution can 

give lots of flexibilities for deployment options, it is 

likely the software’s will keep the majority, letting 

the hardware’s be on the specific vertical 

applications. 

Most of solutions are based on kernel bypass, 

however, there are still efforts to enhance the 

kernel’s, like XDP or Sophos as the kernel itself is 

proven to be secure, full featured, and transparent to 

applications. However, these solutions need to be 

kept and maintained as a part of Linux kernel. 

Without it, the users of the solutions may need to do 

it by themselves and it will limit the use of the 

solutions.

Virtualization environment is getting more 

popular and it became a common platform especially 

for the cloud area. The applications requiring high 

bandwidth traffic like VNF (Virtual Network 

Function) need to process traffic from high 

bandwidth NICs, such as 10Gbps or 40Gbps. It 

requires fast packet processing not only for VNF 

applications but also for hypervisor side. OVS 

(Open vSwitch) or Linux bridge can be a solution 

for software virtual switch of hypervisor, however, 

as long as these are based on Linux kernel, it can 

be a same bottleneck in hypervisor as well. To 

overcome the bottleneck of virtual switch, 

OVS-DPDK has been released since OVS 2.2. For 

I/O of virtual machines, the para-virtualization 

driver, called virtio, has been developed and widely 

used, in order to enhance the performance between 

virtual machines and hypervisor. Also, device 

passthrough solutions, like SR-IOV (Single Root I/O 

Virtualization), have been supported from major 

NIC vendors. Ptnetmap and ptnet in Section 4.5 can 

be comparable solutions for this area. The software 

based technologies, like DPDK, can be easily 

integrated into the virtualization environment. The 

VNF solutions based on DPDK already showed the 

line rate performance with multiple 10 Gbps NICs 

for both of bare-metal and virtualization 

environment (with its own virtual switch) a few 

years ago
[46]. 

Most of solutions mentioned in this article have 

focused on how to handle packets quickly at low 

level (i.e, device driver level), but missing part 

would be how to process packets in protocol stacks 

of layer 2-4. Some solutions like OFP address it, 

but, still in early phase. FD.io can be a candidate as 

its VPP is already proven in the market, but FD.io 

is a comparably new project (founded in 2016).

The 5G is one of the hottest topics in mobile 

space and one of the main keywords of it is cloud 

native 
[47,48], implying 5G core components need to 

be developed and verified in a cloud native 

virtualization environment
[47]. One of the feasible 

ways to go to 5G could be to port their products 

using commodity server at bare metal instead of 

their proprietary hardware, then, to migrate to 

virtualization environment. Some 5G players have 

already moved to this way with their vEPC 

(virtualized Evolved Packet Core) a few years 

ago
[49,50]. Any equipment requiring high bandwidth 

traffic processing and low latency can be utilized 

with the technologies mentioned in this paper. In 

considerations of 5G equipment, EPC or 5GC (5G 

Core) is likely the one bottlenecked because they are 

supposed to process lots of traffic with complex 

protocols (GTP (GPRS: General Packet Radio 

Service) Tunneling Protocol, VxLAN, GRE, IPSec, 

etc) along with typical Layer 2/3 processing in data 

plane side, as a core equipment. As the traffic from 

control plane protocols is relatively much smaller 

than the data plane's, how to accelerate the data 

plane in a standard commodity server and general 

purpose operating system over cloud virtualization 

environment is a key factor for actual deployment. 

A smart NIC was used for 5G PoC a few years ago, 

to offload some complex protocols (VLAN, VxLAN, 

GRE) and virtual switching
[42]. However, vendor 

dependancy especially for hardware limits the 

flexible deployment in a telecom operator's 

perspective, so, its use needs to be carefully 

considered. DPDK is one of the biggest and most 
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active projects in this area supporting multiple CPU 

architectures with lots of techniques already 

implemented and it is market proven. It could be 

inferred that most of 5G suppliers are likely to use 

this technology in their products, though it is not 

mentioned in their product datasheets. 

In this article, after checking the packet 

processing of general purpose operating system, 

focusing on Linux, and its issues, then, various 

techniques for fast packet processing have been 

checked. It has been, then, reviewed for the different 

types of data plane acceleration technologies with 

the packet processing techniques.
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