
논문 19-45-01-08 The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01
https://doi.org/10.7840/kics.2020.45.1.42

42

데이타 인 가속화 기술들에 한 기술 동향 망

김 용 근

A Technical Trend and Prospect of Data Plane Acceleration

Technologies

Yongkeun Kim

요 약

네트워크 트패픽은 폭발 으로 증가해왔고, 이의 증가는 계속될 것으로 상된다. 이러한 네트워크 요구사항을

맞추기 해, 10 Gbps, 40 Gbps 혹은 그 이상의 높은 역폭을 갖는 NIC들이 개발되어 사용되고 있다. 그러나,

이러한 고 역폭 NIC들로부터의 트래픽이 범용 운 체제를 탑재한 시스템에서 히 처리된다는 보장은 없다.

이는 범용 운 체제가 네트워크에 특화된 환경이 아닌, 일반 컴퓨 환경을 해 개발되었기 때문이다. 이런 고

역폭 요구와 운 체제의 처리능력 사이의 차이를 해소하기 해, 범용 운 체제 기반에서 많은 고속 패킷 처리 기

법들과 데이타 인 가속화 기술들이 제안되었고 구 되어 왔다. 본 논문은 범용 운 체제 (리 스) 기반에서

의 패킷처리와 문제 들을 체크한 후, 다양한 고속패킷처리 기법들에 해 조사하고, 이 고속 패킷처리 기법들을

이용한 데이타 인 가속화 기술들에 해 고찰한다.

Key Words : fast packet processing, data plane acceleration, kernel bypass

ABSTRACT

The network traffic has been exponentially grown and it is expected that the growth will continue. To meet

the market requirements, high bandwidth NICs with 10 Gbps, 40 Gbps or even more have been developed and

widely used. However, there is no guarantee that the traffic from the high bandwidth NICs can be properly

processed in a system with general purpose operating systems, because the operating systems have been

developed for general computing not for network centric. To fill the gap between high bandwidth requirement

and operating system’s processing capability, many fast packet processing techniques and data plane acceleration

technologies have been proposed and implemented upon general purpose operating systems, especially Linux. In

this article, after checking the packet processing of general purpose operating system, focusing on Linux, and its

issues, then, various techniques for fast packet processing are investigated. It, then, reviews the different types of

data plane acceleration technologies with the packet processing techniques.

First Author : KoreaQuest, Inc., mkim@koreaquest.net, 정회원

논문번호：201910-236-B-RE, Received October 18, 2019; Revised November 3, 2019; Accepted November 7, 2019

Ⅰ. Introduction

The required network bandwidth has been

increased drastically because more and more devices

are connected to network and applications require

more and more bandwidth. The network equipment

suppliers need to support those bandwidth

requirements by providing with higher performance

equipment periodically. Traditionally, network

equipment suppliers have used their own proprietary

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

43

hardware and software to perform specific network

purposes, because it was likely a feasible way for

them to meet market requirements, competing

against other vendors, and there were little common

hardware platforms to use. It can give them their

own specialties beating competitors and dominating

market, however, it also increases the development

and manufacturing costs, inflexibilities in terms of

new hardware and software development, and

difficulties to meet time-to-market while the market

requires quicker service launch.

However, this trend has been changed for more

than last decade, as the general purpose processors

have been getting more processing capabilities and

more network features because networking became

one of essential features even in pure computing

systems. Moreover, general purpose operating

systems, such as Linux, already have enough

networking protocol stacks. More and more network

vendors have started to develop their own equipment

using the general purpose operating systems on top

of the general purpose processors. It allows the

vendors to do rapid developments in timely manner,

reducing hardware development cost and schedule,

letting them focus on their own software

development with flexibilities, and supporting proper

packet processing performance required from the

market. Even in a data center or cloud, the network

traffic processed by single server is getting higher

with high bandwidth NICs (Network Interface

Cards). 10 Gbps (Giga-bit per second) is getting

popular and 25/40 Gbps even 100/200 Gbps NICs

are available in the market.

The issue is the growth of NIC’s processing

bandwidth is becoming faster than the CPU’s

(Central Processing Unit), so, the question would be

whether a general purpose operating system can

process the traffic from those high-speed NICs or

not, as its network stack is conceived for general

purpose communications rather than high-speed

networking applications. It turned out that the

operating system network stack can hardly support

multiple 10 Gbps interface packet processing at line

rate, through many experimental studies so far
[1,2,3].

To overcome the hurdle, various techniques and

technologies have been proposed and implemented.

In this article, after checking the packet

processing in a standard operating network stack

focusing on Linux in Section II, the various

techniques to reduce the performance bottlenecks are

reviewed in Section III. The current status and

activities of DPA (Data Plane Acceleration)

technologies are reviewed and described in Section

IV, with conclusion in Section V.

Ⅱ. General Packet Processing and Its
Issues

This section describes the general packet

processing in a standard operating system, Linux,

and its issues in a performance perspective.

2.1 General packet processing in Linux
The most commonly used operating systems

provide a network stack generally focusing on

compatibility rather than performance. As Linux has

been widely used for both of network vendors and

general computing area, this article uses Linux as a

reference of operating system unless others are

specified.

Linux network stack follows an interrupt-driven

basis as typically below and described in Fig. 1
[4].

1) Each time a new packet arrives into the

corresponding NIC, this packet is attached to a

descriptor in a NIC’s receiving (RX) queue, which

is typically circular and referred as rings. This

packet descriptor contains information regarding the

memory region address where the incoming packet

is copied via a DMA (Direct Memory Access)

transfer.

2) After DMA the packet from NIC to the DMA

memory region, RX interrupt is raised and the

corresponding interrupt software routine is launched

and copies the packet from the DMA memory

region into a local kernel packet buffer (referred as

sk_buff structure in Linux). Once the copy is made,

the packet descriptor is released so that it can be

used for receiving new packets.

With NAPI (New Application Programming

Interface supported by Linux kernel 2.6 or higher),

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

44

그림 1. 리 스 NAPI RX 흐름[4]
Fig. 1. Linux NAPI RX scheme[4]

when the RX/TX (Receiving/Transmission) interrupt

arrives, its NAPI aware interrupt routine schedules

the execution of a poll function, disabling future

similar interrupts. The poll function checks if there

are any packets available, and copies and enqueues

them into the network stack if ready, without

waiting to an interrupt. The same poll function,

then, will reschedule itself to be executed in a short

future (i.e, without waiting to an interrupt) until no

more packets are available. If there are no more

packets to process, the corresponding interrupt is

activated again. NAPI compliant drivers can drop

traffic at NIC level, without unnecessary work (i.e,

copying the packets into the kernel packet buffer as

NAPI unaware drivers, previous to kernel 2.6, drop

the packet in kernel level). These polling mode of

NAPI is more CPU consumer than interrupt-driven

when the network load is low, but, it shows less

cost with heavy network load.

3) The kernel packet buffer structure with the just

received packet data is pushed into the system

network stack for protocol processing. The packet in

the kernel packet buffer is, then, copied to user

applications for further processing.

2.2 Issues of the general packet processing
[5] describes the factors affecting to packet

processing mostly in hardware perspective, which

are inadequate utilization of CPU capacity, interrupt

overhead with possibility of interrupt livelock,

limited bus bandwidth, RAM (Random Access

Memory) latency, and I/O (Input/Output) latency.

NAPI shows better interrupt handling for interrupt

storm as it can happen when high-speed NICs get

short packets at line rate. However, it is not enough

to overcome the performance challenge in

high-speed NICs because there are many other

architecture problems in software perspective. More

detailed factors in software perspective are

described
[4] as below.

Per-packet allocation and deallocation of

resources. Every time a packet arrives to the system

via an NIC, memory resource for a packet descriptor

(and a kernel packet buffer) has been allocated and

de-allocated. Its cost is significant especially for

high performance packet processing. The kernel

packet buffer (sk_buff) related operations consume

63.1% of CPU power in the reception process of a

64B packet
[6]. The buffer allocation and

de-allocation take near 1,200 and 1,100 cycles

respectively
[7].

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

45

Serialized access to traffic. Thanks to multiple

hardware RSS (Receiver Side Scaling) queues that

can distribute the traffic using a hardware-based

hash function, the receiving process can be

parallelized by assigning each RSS queue to a

specific core. However, the kernel network stack

merges the packets at a single point for layer 3/4

analysis. It causes a bottleneck for N:1 mapping and

user space process can not get packets from a

specific RSS queue. It affects to the performance

degrade, loosing parallel processing benefits at the

driver level.

Multiple data copies from driver to user space.

There are multiple data copies in the packet

processing, from DMA memory region to kernel

packet buffer and from the kernel packet buffer to

user space applications, understanding single data

copy consumes about 500 to 2,000 CPU cycles per

packet depending on the packet size
[7].

Context switching between kernel and user

space. The context switching is required to traverse

between user space and kernel space, caused by

system calls for packet processing. It consumes up

to 1,000 cycles per packet
[7].

No exploitation of memory locality. There are

always possibilities for cache misses and their cost

is significant (13.8% of CPU cycles in reception of

64B packet
[6]). In NUMA (Non-Uniform Memory

Access) architecture, which has become a reference

for multi-processor architecture, the memory locality

is more important as it affects to both cache misses

and longer memory latencies (for example, when a

processor accesses to a memory region which

belongs to another processor).

Ⅲ. Techniques for Fast Packet Processing

There have been many proposed and implemented

techniques to enhance the packet processing

performance in considerations of the issues specified

in Section II, along with operating system’s kernel

itself. In this section, these techniques are explained

in software and hardware approaches.

3.1 Software based approaches
For fast packet processing, most of the techniques

are software based because the general purpose

operating systems have not been designed for fast

packet processing and its enhancements are mostly

related to the operating system’s and software I/O

processing. These have been researched and

specified in many studies
[1-7].

1) Kernel bypass. One of the ways to achieve fast

packet processing is to bypass the kernel and to let

user space applications handle the packets directly

from NICs as the kernel itself is the main bottleneck

in architectural perspective even with certain

enhancements. With kernel bypass, the user space is

responsible for implementing the rest of the network

stacks, meaning the user space must implement the

TCP/IP (Transmission Control Protocol / Internet

Protocol) protocols suite and provide interfaces for

applications to access messages carried over by the

protocols. This scheme became the main stream of

data plane accelerations and there are many open

societies and technologies to achieve it, which will

be explained more in Section IV.

2) Zero-copy. In typical Linux network packet

processing by kernel, it shows at least two packet

copies to deliver to user space applications (from

ring buffer to kernel packet buffer, then, from the

kernel packet buffer to the applications) unless the

packets are dropped in some reasons or forwarded to

other NIC interfaces (for routing application for

example). Mapping the kernel packet memory region

to user space can provide user space applications

with the access to packets without the additional

copy from kernel packet buffer to user applications.

It is already implemented in the current Linux

kernel as a raw socket with RX_RING/TX_RING

socket option
[4]. This same concept can be applied

for DMA memory region to kernel. As most of data

plane acceleration technologies use kernel bypassing,

the zero copy technique from DMA memory region

to user space applications has been used. In kernel

bypass operation, it can be achieved by arranging

for a buffer pool to reside in a shared region of

memory visible to both NICs and user space

software.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

46

3) Pre-allocated packet buffers. It consists of the

pre-allocation of all memory resources required for

packet processing (data and meta-data (descriptor)),

to reduce the per-packet memory allocation

overhead. Also, when a packet has been processed,

its memory resources are not released to the system

but re-used for new incoming packets.

4) Parallel direct paths. Direct parallel paths

between RSS queues and applications need to be

processed to solve the serialized access to traffic for

layer 3/4 analysis. It may achieve the best

performance when a specific core is assigned both

for taking packets from RSS queues and forwarding

them to the user space. It requires certain

modifications of the data exchange between kernel

space and user space in Linux.

5) Batch I/O processing. It groups packets into a

buffer and processes them to kernel or user memory

in groups called batches. It reduces the number of

system calls and the consequent context switchings,

and mitigates the number of copies. It amortizes

per-packet processing overhead. However, it

increases the latency and jitter, and may cause

timestamp inaccuracy because packets have to wait

until a batch is finished or a timer expires.

6) Forward pre-fetching. To reduce cache misses,

the driver may pre-fetch the next packet while the

current packet being processed. The idea is to load

the memory locations, which will be likely used in

a near future, into processor’s cache in advance for

faster access when required.

7) Affinity. Memory affinity is for a process to

allocate/use memory assigned to the processor in

which it is being executed, to exploit memory

locality. CPU and interrupt affinity is also important

as it is more likely to find packets in a local cache

if previously these data have been received by an

interrupt handler assigned to the same core.

8) Huge page support. In modern CPU

architectures, memory is managed as pages, which

are virtually and physically contiguous blocks of

memory with a standard page size of 4KB (Kilo

Bytes). When an application is run, the page

addresses for accessing memory locations need to be

translated from the virtual to the physical. To

improve performance, the most recently used for the

translation is kept in a cache, called TLB

(Translation Lookaside Buffer). As each page

occupies an entry in the TLB, the bigger page size

the less cache misses. Intel-64 architecture can

support 1 GB (Giga Byte) page size in 64-bit

addressing mode, along with 4 KB and 2 MB (Mega

Byte) page sizes, so, supporting this huge page size

takes an advantage of less cache misses, resulting in

faster packet processing.

9) Lockless programming. Locking is a

conventional mechanism for programming in

multi-process environment, to synchronize the access

to a resource. Although it is one of the simplest

ways to synchronize, it also shows many

disadvantages, such as contention, locking overhead,

lack of composability, priority inversion, convoying,

etc. These issues directly impact on the performance

of packet processing, so, for faster packet

processing, programming and operations in lockless

or in a way to reduce locking are necessary.

10) Hardware multi-queue support. Most of

modern NICs can process packets in multiple

hardware queues, which prove very useful not only

for load balancing and dispatching but also for better

I/O performance especially in multicore systems. For

example, RSS hashes some pre-determined packet

fields to select a queue, while queues can be

associated with different cores. In this way, traffic

from a single NIC can be distributed among

different cores. It is not pure software solution, but,

as it is a part of commodity hardware typically used

with the existing software techniques above, this

article regards it as a part of software based.

3.2 Hardware based approaches
There are two main streams currently used for

fast packet processing techniques in hardware

perspective, which are GPU (Graphics Processing

Unit) or FPGA (Field Programmable Gate Array)

based.

1) GPU based processing. The GPUs offer

extreme thread level parallelism, while CPUs

maximize instruction-level parallelism. In general,

GPUs are very well suited for packet processing

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

47

그림 2. DPDK 유무에 따른 리 스커 [10]
Fig. 2. Linux kernel with / without DPDK[10]

applications as they offer data-parallel execution

model. It can posses thousands of processing cores

and they adopt single-instruction, multiple thread

(SIMT) execution model where a group of threads

execute concurrently
[3,8].

2) FPGA based processing. The FPGAs have a

massive amount of parallelism built-in because they

posses millions of LEs (Logic Elements) and

thousands of DSP (Digital Signal Processing)

blocks. However, they have an increased

programming complexity which is the main

challenge for using an FPGA as an accelerator.

There are HLS (High-Level Synthesis) tools that try

to overcome this problem by allowing to program

FPGAs in high-level programming languages
[3].

Ⅳ. Technologies for Data Plane
Acceleration

There have been lots of activities and committees

for acceleration of data plane performance since

early 2000. This section reviews and summarizes

most of well known approaches.

4.1 DPDK (Data Plane Development Kit)
One of the most widely used technologies is

called DPDK, which was initiated by Intel Corp. in

2010 and became a fully open-source project. The

open-source committee was established at DPDK.org

in 2013 and has facilitated the continued expansion

of the project. It consists of libraries and drivers,

also known as PMDs (Poll Mode Drivers), to

accelerate packet processing workloads running on

the variety of CPU architectures, including x86,

POWER (Performance Optimization With Enhanced

RISC (Reduced Instruction Set Computer)) and

ARM (Advanced RISC Machines) processors,

mostly in Linux user space (packaged in Fedora,

Ubuntu, Debian, RedHat, etc), with a FreeBSD port

available for a subset of DPDK features. It is

licensed under the Open Source BSD (Berkeley

Software Distribution) License
[9]. This libraries and

drivers abstract away the low-level implementation

details, providing flexibility as each vendor

implements its own low-level layers. DPDK has

been getting more popular in recent years, in

collaboration with many open-source projects, such

as OVS (Open vSwitch), ODP (Open Data Plane),

OFP (Open Fast Path), vDPA (vhost Data Path

Acceleration), OPNFV (Open Platform for Network

Function Virtualization), etc.

The basic concept is to let user space applications

process packets without involving Linux kernel

network stack (which is the main bottleneck for

packet processing performance), communicating

directly with networking device described in Fig.

2
[10]. In Linux network processing (left side of Fig.

2), it separates network packet processing routines

from user applications, using the existing routines in

kernel. When applications in user space send/receive

packets, the packets are processed in kernel network

stack along with NICs using interrupts. This

approach can give some benefits for application

developers as it makes the developers to be free

from the network packet protocol processing, letting

the kernel process them instead. However, the

switching between kernel mode and user mode

needs to be done for packet processing via system

calls, and the cost of it is not trivial. Also, there are

other costs for interrupt processing of incoming

packets from NICs and data copying from the kernel

to user space. These overheads are serious especially

for applications requiring high packet processing

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

48

그림 3. DPDK 구조
Fig. 3. DPDK architecture

그림 4. DPDK 동작 모드
Fig. 4. DPDK operational modes

performance at line rate. One of the ways to

minimize this overheads is to let all the packet

processing be done in user space instead of kernel

space, by bypassing the kernel and it is where many

data plane acceleration technologies come, including

DPDK.

The basic architecture is described in Fig. 3,

consisting of EAL (Environment Abstraction Layer)

and data plane libraries. The data transfer is done by

PMDs in direct communications with NICs by

bypassing kernel and user space applications use the

libraries instead of expense system calls. The EAL

provides a generic interface that hides the

environment specific from the applications and

libraries, including the services, such as DPDK

loading/launching, core affinity/assignment

procedures, system memory reservation, trace and

debug functions, spinlocks and atomic counters,

CPU feature identification, interrupt handling, alarm

functions, etc
[11]. The PMDs are designed to work

without interrupt-based processing mechanisms,

consisting of APIs (Appllication Programming

Interfaces) and provided through BSD drivers

running in user space to configure the devices and

their respective queues. It can access the RX and

TX descriptors directly without any interrupts to

quickly receive, process and deliver packets to user

applications
[11]. There are about 39 supported NIC

drivers for both of native and virtual as of today,

including 1 Gbps, 10 Gbps, 40 Gbps and

paravirtualized driver called virtio. Also, many

hardware accelerators for baseband, crypto,

compression, etc., are supported.

The core libraries are ring manager (librte_ring)

for providing a lockless multi-producer,

multi-consumer FIFO (First In First Out) API in a

finite size table, memory pool manager

(librte_mempool) for allocating pools of objects in

memory, buffer manager (librte_mbuf) for

managing buffers that may be used by DPDK

applications to store message buffers, timer manager

(librte_timer) for timer service to DPDK execution

units with the ability to execute a function

asynchronously
[11]. Additionally, the framework

includes NUMA awareness to avoid expensive

memory operations across memory nodes and huge

pages to optimize physical-to-virtual page mappings

within the CPU’s TLB.

It supports two operational modes,

run-to-completion and pipeline, described in Fig. 4.

In run-to-completion model, all resources must be

allocated prior to calling data plane applications,

running as execution units on logical processing

cores. In Fig. 4, a specific port’s RX descriptor ring

is polled for packets through an API. Packets are

then processed on the same core and placed on a

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

49

그림 5. ODP 구조[13]
Fig. 5. ODP architecture[13]

port’s TX descriptor ring through an API for

transmission. Each logical core assigned to the

DPDK executes a packet processing loop with

retrieving incoming packets, processing each

received packet one at a time, and sending pending

outgoing packets
[11]. Pipeline model may also be

used by passing packets or messages between cores

via rings. This allows work to be performed in

stages and may allow more efficient use of code on

cores. One core polls one or more ports’ RX

descriptor rings through an API. Packets are

received and passed to another core via a ring. The

other core continues to process the packets which

then may be placed on a port’s TX descriptor ring

through an API for transmission. Some logical cores

may be dedicated to the retrieval of incoming

packets and other logical cores to the processing of

previously received packets
[11].

DPDK has considered lots of things to enhance

packet processing, not only for reducing the kernel

bottlenecks mentioned earlier, but also for handling

memory and I/O operations in a deliberate manner.

It supports 1) huge page (to use bigger page such as

2MB or 1 GB) to reduce TLB misses, 2) NUMA

awareness DPDK APIs are structured around for

every operation, 3) simple way for DMA address

translation, 4) awareness of underlying physical I/O

memory area with IOMMU (I/O Memory

Management Unit), 5) shared memory

implementation for multiple processes not to require

any address translations, and 6) optimized memory

pools for high performance
[12].

DPDK itself doesn’t include Layer 2 to 4

protocol stack but a framework with layer 1

implementation (i.e, device driver level), which

means TCP/IP stack should be implemented on top

of it to process network packets and the way of

protocol stack implementation affects to the

performance significantly. The network vendors who

want to use DPDK for their product development

have two options, to develop the protocol stack by

themselves (or outsourced) with or without open

source protocol stacks or to license commercial

protocol stack from protocol stack vendors.

There are some open issues for DPDK. Though

DPDK supports NUMA awareness, if the packets

are forwarded to ports assigned to other cores,

memory access by the other cores to the receiving

core’s affects to the performance (lower than the

ports assigned to the receiving core). Even layer 4

stack (TCP) is implemented on top of DPDK, the

applications, who want to use it with socket

interface, may need to be modified as its behavior

is likely different from that of typical Linux socket

interface. There have been tries to have the same

socket interface behavior in DPDK user space, but,

so far, its performance looks not good enough.

Initially, it focused on Intel x86 processors, but,

after becoming open source, its supporting scope is

getting wider and many other open committees use

it as one of their architectures. Thanks to its high

performance, many network vendors have developed

their products based on DPDK and they are already

in commercial phase, so, it can be regarded as a

mature one.

DPDK is one of the most active open source

projects, releasing new version every three month

with thousands patches from hundreds people and

adding more libraries. Its use is becoming a de-facto

standard in the high performance packet processing

area.

4.2 ODP (Open Data Plane)
ODP is to provide a common set of APIs for

application portability across diverse range of

networking platforms (SoCs (System on Chips) and

servers) that offer various types of hardware

acceleration
[13], letting hardware vendors develop its

actual implementation for what and how the APIs

are realized, pictured in Fig. 5. After project

launching in 2013, ODP implementations exist for

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

50

그림 6. ODP 패킷 흐름 개요[14]
Fig. 6. ODP packet flow overview[14]

ARM, MIPS (Microprocessor without Interlocked

Pipeline Stages), POWER, x86 and proprietary

SoCs.

ODP application packet flow is described in Fig.

6. After arriving and being received (RX) from a

network interface represented by a logical port

(called PKTIO), packets go either directly to

Queues that are polled by ODP threads

(odp_thread), or can pass through Classification to

parse packet and apply pattern matching rules then

are sorted into Queues that represent individual

flows. These queues can then be dispatched to

application threads (odp_thread in Fig. 6) via

Scheduler, who is responsible for selecting and

dispatching one or more events to a requesting

thread. Threads, in turn can invoke various ODP

APIs to manipulate packet contents prior to

disposing of them. For output processing, packets

make by directly queued to a PKTIO output queue

or else they may be handed to Traffic Manager for

controlling traffic shaping and processing

programmatic quality of service before winding up

being transmitted (TX). Output interfaces may

operate in loopback mode, in which case packets

sent to them are re-routed back to the input lines for

“second pass” processing. For example, an incoming

IPSec (Internet Protocol Security) packet cannot be

properly classified (beyond being IPSec traffic) until

it is decrypted. Once decrypted and its actual

contents made visible, it can then be classified into

its real flow
[14]. Only the odp_threads have

application logics and everything else is provided by

the ODP framework and available for use by any

ODP application.

ODP has released production-ready versions since

2016 and ODP-Linux and ODP-DPDK have been

implemented as references. Both of DPDK and ODP

work at device driver level and don’t have protocol

stacks, so, some commercial software vendors offer

their protocol stacks on top of ODP layer. ODP is

a member of OFP (Open Fast Path) who is also an

open source committee for high performance TCP/IP

stack. As it provides a common set of APIs for

application portability, there should be optimized

protocol stacks on top of it in order to achieve high

performance communications.

4.3 OFP (Open Fast Path)
OFP

[15] is to create and develop an open source

fast path TCP/IP stack, designed to run in Linux

user space (called “fastpath”). OFP operates on top

of ODP as a protocol stack, in collaboration with

Linux kernel network stack (i.e, if the packets OFP

can not handle probably due to not-implemented yet

for example, the packets go to Linux kernel and let

its network stack (called “slowpath”) handle it),

running on ARM, x86 and MIPS and mainly

contributed by Nokia, ARM and Enea. DPDK

support can be made with ODP-DPDK integration

layer. Its first version v1.0 was released in

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

51

그림 7. OFP 시스템 구조[15]
Fig. 7. OFP system view[15]

December, 2015.

Its architecture is pictured in Fig. 7, consisting of

network interface, ODP implementation, OFP

libraries, user applications and Linux host system
[15].

At least one core need to be allocated for Linux

system calls for slowpath processing using

TUN/TAP (network TUNnel/network TAP)

interface and more cores may be allocated for Linux

host if there are lots of slowpath traffic. Other cores

can be allocated to ODP for fastpath processing.

All the packets in incoming or outgoing are

processed by ODP, then, the packets are delivered to

OFP or Linux host depending on the decision

whether these can be processed in OFP or not. User

Conf Code is for a management of ODP and OFP

and User/Default Dispatcher is a dispatcher

implementation that reads packets through the ODP

APIs. The routing and ARP (Address Resolution

Protocol) tables are synchronized between Linux

host (slowpath) and OFP (fastpath) using Netlink

API and system commands.

Its fastpath protocols consist of Layer 4

(UDP/TCP (User Datagram Protocol/Transmission

Control Protocol) termination, ICMP (Internet

Control Message Protocol)), Layer 3 (ARP/NDP

(Neighbor Discovery Protocol), IPv4/v6 (IP version

4 / version 6) forwarding & routing, IPv4

fragmentation and reassembly, VRF (Virtual Routing

and Forwarding) for IPv4, IGMP (Internet Group

Management Protocol) and multicast, basic IPSec),

Layer 2 (Ethernet, VLAN (Virtual Local Area

Network)) and VxLAN (Virtual extensible LAN)

and GRE (Generic Routing Encapsulation) tunneling.

It also supports CLI (Command Line Interface) and

configuration file.

The packet processing is handled through a series

of self-contained processing functions (layer 2/3/4

protocols) as single thread run-to-completion

environment. Thanks to its architecture (assigning

cores for OFP dedicatedly in run-to-completion

mode), its performance can be scaled up linearly by

adding processing cores, showing much more

performance than Linux kernel. In facts, it

architecture, concept and operation behavior are very

similar with 6WINDGate
[16], the commercial version

of network stack on top of DPDK.

It is still in incubation phase, meaning it may

require certain customizations and optimizations to

use it for commercial purpose. One of key

contributors, Enea, does professional services for

vendors who want to use it commercially. There are

competitions against commercial stack vendors who

have similar architecture and more mature products.

4.4 FD.io
FD.io (Fast Data input/output), as a Linux

Foundation project, is a community with multiple

projects in software-based packet processing towards

the creation of high-throughput, low-latency and

resource-efficient IO services suitable to many

processor architectures (x86, ARM and PowerPC

(Performance Optimization With Enhanced RISC -

Performance Computing) and development

environments (bare metal, VM (Virtual Machine),

container)
[17], founded in 2016. It uses DPDK for

device driver layer to get packets to and from

(v)NICs ((virtual) NICs) and threads/cores. Vector

Packet Processing (VPP) library, donated by Cisco,

is a key as the code in VPP is already running in

commercial products and is modular, allowing easy

plug-in without major changes to the underlying

code basis and running in user space of Linux.

VPP is a data plane, consisting of a set of

forwarding nodes arranged in a directed graph and a

supporting framework. The framework has all the

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

52

그림 8. VPP 구조:패킷처리 그래 [18]
Fig. 8. VPP architecture: packet processing graph of
nodes[18]

그림 9. Netmap 모드에서, NIC ring들은 호스트스택과 연
결이 단 되며, netmap API를 통해 패킷을 교환된다. 호스트
스택과의 통신은 두 개의 추가 인 ring들이 사용된다[19].
Fig. 9. In netmap mode, the NIC rings are disconnected
from the host network stack and exchange packets through
the netmap API. Two additional netmap rings let the
application talk to the host stack[19].

basic data structures, timers, drivers (and interfaces

to driver kits like DPDK), a scheduler which

allocates the CPU time between the graph nodes,

and performance and debugging tools, like counters

and built-in packet trace. The input node polls (or

interrupt driven) an interface's RX queue for a burst

of packets. It assembles those packets into a vector

or a frame per next node, e.g. it sorts all IPv4

packets and passes those to the ip4-input node, the

IPv6 packets into the ip6-input node and so on.

When the ip6-input node is scheduled, it takes its

frame of packets and processes them in a tight dual

loop (or quad-loop) with prefetching to the CPU

cache to achieve optimal performance. This makes

more efficient use of the CPU cache by reducing

misses, and scales efficiently for larger CPU caches.

The ip6-input node pushes the various packets onto

another set of next-nodes, e.g. error-drop if

validation checks failed, or most typically

ip6-lookup. The frame of packets moves like a train

through the system until they hit the interface-output

node and are shipped onto the wire, described in

Fig. 8
[18].

FD.io is in collaboration with other open source

projects, such as DPDK for network I/O layer,

OPNFV FastDataStacks project using VPP as a data

plane forwarding component. Also, apart from the

main VPP project, there are several adjacent projects

under the FD.io umbrella: Honeycomb (ODL

(OpeDayLight) integration), CSIT (Continuous

System Integration and Testing), NSH SFC

(Network Service Header, Service Function

Chaining), ONE (Overlay Network Engine), VPP

Sandbox, TLDK (Transport Layer Development

Kit), package management, TRex (low-cost high

speed stateful traffic generator), hICN (hybrid

Information-Centric Networking)
[18].

4.5 Netmap
Netmap has been suggested and implemented by

Luigi Rizzo[19] in 2012, as a framework of fast and

efficient packet I/O for both user space and kernel

clients (programs, processes) without requiring

custom hardware or changes to applications,

showing 14.88 Mpps (Million packet per second)

(i.e, the peak packet rate on 10Gbps) with one core

(900 MHz). To achieve the high performance, it

uses 1) preallocated linear and fixed size packet

buffers when a device is opened, 2) removal of data

copy costs (i.e, zero-copy transfer) by granting

applications direct and protected access to packet

buffers, 3) a lightweight metadata representation and

4) support of useful hardware features. User space

applications can dynamically switch NICs into

netmap mode, described in Fig. 9, and send and

receive raw packets through shared memory buffers.

It has similar scheme with that of DPDK as user

space applications can talk to NICs directly,

however, [20] insisted that it has less performance

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

53

그림 10. 바닐라 PF_RING[26]
Fig. 10. Vanilla PF_RING[26]

than DPDK and requires more maintenance cost for

NIC supports.

Netmap framework has been extended to

virtualization supporting as ptnetmap
[21] and its

successor ptnet[22]. Ptnetmap is a netmap based

virtual passthrough solution, which is similar with

hardware passthrough concept, but allowing

complete independence from the hardware and

regarding the networking port exported to virtual

machines as a software port not a piece of hardware.

This concept can give benefits for live migration as

the virtual machines are not limited to a specific

hardware. Ptnet is a paravirtualized device model,

like virtio
[23]. It is based on netmap and its

performance is comparable with that of virtio for

traditional socket applications, having more

portability
[22].

4.6 PF_RING
PF_RING is a new type of network socket and

user space framework that allows packet processing

at high rates while providing consistent APIs for

packet processing applications. It was developed by

Luca Deri, a founder of ntop (www.ntop.org) with

his paper
[24] and its enhancement[25] called PF_RING

DNA (Direct NIC Access). PF_RING polls packets

from NICs using Linux NAPI which copies packets

to PF_RING circular buffer (“ring”), then, the user

space applications poll the ring to read the packets.

It can distribute the incoming packets to multiple

rings simultaneously for multiple applications,

described in Fig. 10
[26]. It consists of 1) kernel

module for low-level packet copying to the

PF_RING circular buffer, 2) user space SDK

(Software Development Kit) for user space

applications, and 3) PF_RING aware device driver

for additional improvements in packet capturing. It

supports zero copy operation (called PF_RING ZC

which is a commercial version of PF_RING),

supporting full 10Gbps line rate processing (14.8

Mpps) with Xeon 2.5GHz. For the zero copy

operation, packets are read directly from the network

interface by bypassing the Linux kernel and the

PF_RING kernel module. For this, NIC memory and

registers are mapped into the user space, so the

packet copy from NIC to DMA ring is done by NIC

network process unit instead of NAPI. It is in

similar position with that of DPDK at device driver

level (i.e, doesn’t have protocol stacks), however, as

DPDK has much bigger name at the moment, it may

focus on vertical applications specialized in packet

capture and traffic analysis.

4.7 XDP (eXpress Data Path)
XDP, driven by an open source project called IO

Visor
[27] of Linux Foundation projects, is to

accelerate the packet process inside kernel not

bypassing it. The basic idea is not to replace the

kernel stack but to provide simpler and faster

alternative way in kernel, by kernel hooks using

eBPF (extended Berkley Packet Filter: a highly

flexible and efficient one in Linux kernel allowing

to execute bytecode at various hook points in a safe

manner. It can be executed at the lowest point of

software stack) in collaboration with the existing

kernel network stack.

The XDP packet process includes a kernel

component that processes RX packet-pages directly

out of driver via a functional interface without early

allocation of kernel packet buffer (sk_buff) or

software queues. Normally, one CPU is assigned to

each RX queue, so, there is no locking RX queue,

and the CPU can be dedicated to busy poll or

interrupt model. BPF programs perform processing

such as packet parsing, table lookups,

creating/managing stateful filters, packet

manipulation, etc
[27,28]. The packets may be

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

54

그림 11. XDP 패킷 로세서[28]
Fig. 11. XDP packet processor[28]

그림 12. 각 기술들간의 계 , 계 패킷흐름
Fig. 12. Hierarchy, relationship and packet flow of the
technologies

dropped, forwarded possible with packet

modification (for NAT (Network Address

Translation) for example), or locally received by

Linux kernel, described in Fig. 11.

XDP’s goal is to close the performance gap to

kernel-bypass solutions (not intending to be faster

than kernel-bypasses’), working in concert with

Linux kernel stack along with all the benefits of

BPF. It may not be used for most of network use

cases, but for pre-stack processing (like filtering to

support DDoS (Distributed Denial of Service)

mitigation), forwarding and load balancing, batching

techniques such as in software-based offloading like

GRO (Generic Receive Offload), flow sampling /

monitoring, etc.

Its performance has been evaluated in [29], which

showed 24 Mpps with single core (while DPDK was

43.5 Mpps), however, comparing to kernel bypass

technologies, it insisted XDP has certain benefits

such as keeping kernel security and management

compatibility, utilizing existing kernel stack features

as needed, providing a stable programming interface

with transparency to applications.

To support fast delivery of raw XDP frames into

user space, XDP can bypass the Linux kernel

network stack via XDP_REDIRECT into a special

BPF-map containing AF_XDP socket which is a

new address family type. The PMD for AF_XDP is

available in DPDK
[9].

The technologies mentioned from Section 4.1 to

4.7 is described in Fig. 12, upon their hierarchy and

relationship with packet flow. It is also specified in

the Fig. 12 for the major techniques (kernel bypass,

poll mode support, zero copy support, pre-allocated

packet buffer and batch I/O processing) used by the

technologies.

4.8 Other technologies
PacketShader[6] is a high-performance PC-based

software router platform that accelerates the core

packet processing with GPUs, developed by KAIST

in 2011. It offloads computation and

memory-intensive router applications to GPUs while

optimizing the packet reception and transmission

path on Linux. It uses GPU for data parallel

execution because GPUs are widely used for

high-performance parallel applications whose

workloads require enormous computation cycles

and/or memory bandwidth[30]. It optimizes the packet

I/O in Linux with huge packet buffer (instead of

allocating metadata and packet data for each packet

reception, PacketShader pre-allocates two huge

circular buffers with a large array for metadata and

packet data, resulting in greatly reduction of the

memory allocation/deallocation overhead for

high-speed packet reception), batch processing,

NUMA-aware data placement and multi-core CPU

scalability, while operating GPU accelerated packet

processing in user space of Linux with modification

of Intel-based NIC (82598/82599) drivers. The

drivers bypass the kernel network stack, delivering

packet to user space GPU acceleration framework. It

was demonstrated close to 40 Gbps throughput of

packet forwarding for all packet sizes, with two

Xeon X5550 2.66 GHz for CPU and two NVIDIA

GTX480 cards for GPU[6].

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

55

OpenOnLoad[31] is an implementation of TCP

and UDP over IP which is dynamically linked into

an application’s address space and granted direct

access to accelerated network hardware. The

network stack interposes network operations from

the applications and enables them to be handled

completely at user space. In so doing, it bypasses

the operating system and significantly improves

performance through the removal of disruptive

events such as context switches and interrupts which

otherwise reduce the efficiency by which a

processor can execute application code
[31]. Solarflare

Communications, Inc. has released its NICs,

supporting application transparency with high

performance. However, as it is a hardware based

solution meaning their customers have to be

equipped with the vendor’s NICs, the customer

space is likely limited.

NetSlices
[32] is an operating system abstraction

that processes packet in user space and enables a

linear increase of performance with the number of

cores. Spatial partitioning of hardware resources at

coarse granularity is done in order to reduce

interference and contention. Its APIs provide

applications with fine-grained control of hardware

resource. The streamlined path is also brought by

NetSlice for packets to move between user space

and kernel space. With spatial partitioning (i.e,

allocating a RX/TX queue to specific core), network

traffic is divided into “slices” and independent

packet processing execution contexts allow

parallelism and contention minimization. It requires

a simple kernel extension which can be loaded at

runtime to replace with conventional raw sockets.

Contrary to most of other solutions, it does not take

advantage of zero copy, but copies each packet once

between the user space and kernel space, insisting it

gains added portability and usability.

Sophos Ltd., a firewall and security company,

presented their proposal and initial implementation

for fast packet processing in Linux kernel, in

NetDev 1.2[33]. It uses Netmap with enhanced

networking stack along with pre-allocated rx/tx

buffer, batch I/O capabilities and forward cache

prefetching for fast packet processing in Linux

kernel as Linux kernel already has the full network

stack. It has implementation of fastpath networking

stack in Linux kernel for high performance, letting

the packets, which can not be processed in the

fastpath networking stack in the kernel, be processed

in normal Linux networking stack. It showed about

5 times more processing than standard Linux stack

for their firewall application.

Snabb was started in 2012 by a free software

hacker, Luke Gorrie, providing direct access to the

high performance NICs but in addition to that it also

provides an environment for building and running

network functions
[34]. It is a toolkit for developing

network functions in user space mostly aimed for

high performance networking with user space drivers

for supported NICs, written in Lua, a high level

programming language. It is composed of Engine

(that runs network functions), Libraries (that ease

of the development of network functions), Apps

(reusable software components that generally

manipulate packets) and Programs (ready-to-use

standalone network functions). A network function

in Snabb is a combination of apps connected

together by links. The Snabb’s engine is in charge

of feeding the app graph with packets and give a

chance to every app to execute. The first Snabb

applications are L2 VPN (Layer 2 Virtual Private

Network), IPv6 translation, L7 (Layer 7) firewall,

etc. It provides a way to develop network functions

easily with high performance using user space

drivers, but, still looks in limited market space.

OPNFV FastDataStack project[35]. OPNFV, a

collaborative project under Linux Foundation, is a

project and community that facilitates a common

NFVI (Network Function Virtualization

Infrastructure), continuous integration with upstream

projects (such as OpenDaylight, OpenStack,

Kubernetes, Ceph Storage, KVM (Kernel-based

Virtual Machine), Open vSwitch, Linux, DPDK,

FD.io, etc.), stand-alone testing tool sets, and a

compliance and verification program for

industry-wide testing and integration to accelerate

the transformation of enterprise and service provider

networks. Goals include accelerating time to market

for NFV (Network Function Virtualization)

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

56

solutions, easing operational burdens, and ensuring

the platform meets the industry’s needs[36]. For data

plane, OPNFV engages with OVS (Open vSwitch),

FD.io and DPDK to address performance, scale and

resiliency needs for carrier networks. There are lots

of active projects under OPNFV and one of them is

FastDataStacks. FastDataStacks was started in spring

2016, to meet the requirements for high performance

data plane stack in NFV and virtualized applications,

by building solution stacks supplied by FD.io along

with functionality for realizing application policies

and controlling a complex network topology. The

key components are VPP (as a network forwarder)

and HoneyComb for dataplane management agent

from FD.io, virtual machine controller from

OpenStack, a network controller from OpenDaylight,

and installation and test suits from OPNFV. The

scenarios have been developed upon [OpenStack –

VPP] and [OpenStack – OpenDaylight – VPP]

with various features and functionalities. Its

integration, configuration and test details are in [35].

NetFPGA
[37] is a project to develop open-source

hardware and software for rapid prototyping of high

performance network devices based on FPGA,

started in 2007. There are three platforms available,

NetFPGA-SUME, NetFPGA-1G-CML and

NetFPGA-10G. A solution like NetFPGA SUME

can reach the speed of upto 100 Gbps
[38], insisting

the rapid prototyping can be done with its

ready-made reference and modular hardware and

software components as flexible building blocks.

Smart NICs. One of the ways to accelerate the

data plane processing is to hire additional hardware

processing capability on top of standard NICs,

providing certain functionalities and offloading them

from the host system's CPU
[39], which is called as a

smart NIC. Although the definition and supporting

capabilities of NICs may be different from NIC

vendors and researchers, it is becoming an emerging

solution as another approach to address the

limitations of the kernel network stack. The

functionalities of smart NICs can be developed with

ASIC (Application Specific Integrated Circuit), SoC

or FPGA, whose choice depends on the use cases of

the NICs
[40]. One of the examples for massive

deployment in the cloud space is AccelNet,

Microsoft's solution for offloading host networking

to hardware using custom Azure smart NIC based

on FPGA, and it showed 32 Gbps throughput with

AccelNet (comparing it was 5 Gbps without it)
[41]. A

smart NIC (it was called as hardware-assisted NIC

in the paper) was used for 5G (fifth generation) PoC

(Proof od Concept) by Intel Corp. and SK Telecom

Co., Ltd., to offload virtual switching and tunnel

endpoint termination (VLAN, VxLAN, GRE) for

network overlays in KVM virtualization

environment
[42]. There have been many studies and

architecture proposals to use smart NICs to offload

network functions mainly targeting cloud area, such

as UNO
[43], PANIC[44], AccelNet[41], etc.

Ⅴ. Conclusion

Linux has been a most widely used operating

system for networking, though it was initially

developed for general computing. Most of network

equipment vendors have used Linux as it is open

source and it has been evolved continuously with

lots of contributors’ efforts to integrate new features

and solutions. That is why all of the solutions

mentioned in this article have focused on Linux. The

issue of general purpose operating systems, such as

Linux, is that the throughput of the high bandwidth

network interfaces, such as 10 Gbps, 40 Gbps or

even more, can be hardly supported by the operating

system’s network stack, because the operating

system is originally designed for general purpose not

network specific. To resolve it, lots of studies and

proposals have been conducted since early 2000.

DPDK has the biggest name in this area with lots

of active contributors and users. The products based

on DPDK solution are already commercially

available with various forms, UTM (Unified Threat

Management), mobile core equipment, router, etc. It

can be, therefore, easily inferred that it will keep its

position as one of main streams in this area for

certain period of time.

Some solutions are based on hardware, like GPU

or FPGA, however, the majority is based on

software upon commodity hardware though there

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

57

may be some limitations of software based solutions

especially on NICs for whether or not to be

supported. Although there are some issues in SDN

(Software Defined Network) in terms of

expandability and centralized architecture
[45], it is

expected that the way to SDN/NFV will be

continued. In this environment, software solution can

give lots of flexibilities for deployment options, it is

likely the software’s will keep the majority, letting

the hardware’s be on the specific vertical

applications.

Most of solutions are based on kernel bypass,

however, there are still efforts to enhance the

kernel’s, like XDP or Sophos as the kernel itself is

proven to be secure, full featured, and transparent to

applications. However, these solutions need to be

kept and maintained as a part of Linux kernel.

Without it, the users of the solutions may need to do

it by themselves and it will limit the use of the

solutions.

Virtualization environment is getting more

popular and it became a common platform especially

for the cloud area. The applications requiring high

bandwidth traffic like VNF (Virtual Network

Function) need to process traffic from high

bandwidth NICs, such as 10Gbps or 40Gbps. It

requires fast packet processing not only for VNF

applications but also for hypervisor side. OVS

(Open vSwitch) or Linux bridge can be a solution

for software virtual switch of hypervisor, however,

as long as these are based on Linux kernel, it can

be a same bottleneck in hypervisor as well. To

overcome the bottleneck of virtual switch,

OVS-DPDK has been released since OVS 2.2. For

I/O of virtual machines, the para-virtualization

driver, called virtio, has been developed and widely

used, in order to enhance the performance between

virtual machines and hypervisor. Also, device

passthrough solutions, like SR-IOV (Single Root I/O

Virtualization), have been supported from major

NIC vendors. Ptnetmap and ptnet in Section 4.5 can

be comparable solutions for this area. The software

based technologies, like DPDK, can be easily

integrated into the virtualization environment. The

VNF solutions based on DPDK already showed the

line rate performance with multiple 10 Gbps NICs

for both of bare-metal and virtualization

environment (with its own virtual switch) a few

years ago
[46].

Most of solutions mentioned in this article have

focused on how to handle packets quickly at low

level (i.e, device driver level), but missing part

would be how to process packets in protocol stacks

of layer 2-4. Some solutions like OFP address it,

but, still in early phase. FD.io can be a candidate as

its VPP is already proven in the market, but FD.io

is a comparably new project (founded in 2016).

The 5G is one of the hottest topics in mobile

space and one of the main keywords of it is cloud

native
[47,48], implying 5G core components need to

be developed and verified in a cloud native

virtualization environment
[47]. One of the feasible

ways to go to 5G could be to port their products

using commodity server at bare metal instead of

their proprietary hardware, then, to migrate to

virtualization environment. Some 5G players have

already moved to this way with their vEPC

(virtualized Evolved Packet Core) a few years

ago
[49,50]. Any equipment requiring high bandwidth

traffic processing and low latency can be utilized

with the technologies mentioned in this paper. In

considerations of 5G equipment, EPC or 5GC (5G

Core) is likely the one bottlenecked because they are

supposed to process lots of traffic with complex

protocols (GTP (GPRS: General Packet Radio

Service) Tunneling Protocol, VxLAN, GRE, IPSec,

etc) along with typical Layer 2/3 processing in data

plane side, as a core equipment. As the traffic from

control plane protocols is relatively much smaller

than the data plane's, how to accelerate the data

plane in a standard commodity server and general

purpose operating system over cloud virtualization

environment is a key factor for actual deployment.

A smart NIC was used for 5G PoC a few years ago,

to offload some complex protocols (VLAN, VxLAN,

GRE) and virtual switching
[42]. However, vendor

dependancy especially for hardware limits the

flexible deployment in a telecom operator's

perspective, so, its use needs to be carefully

considered. DPDK is one of the biggest and most

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

58

active projects in this area supporting multiple CPU

architectures with lots of techniques already

implemented and it is market proven. It could be

inferred that most of 5G suppliers are likely to use

this technology in their products, though it is not

mentioned in their product datasheets.

In this article, after checking the packet

processing of general purpose operating system,

focusing on Linux, and its issues, then, various

techniques for fast packet processing have been

checked. It has been, then, reviewed for the different

types of data plane acceleration technologies with

the packet processing techniques.

References

[1] I. Marinos, R. N. Watson, and M. Handley,

“Network stack specialization for performance,”

in Proc. twelfth ACM Workshop on Hot Topics

in Network, p. 9, ACM, 2013.

[2] T. Barbette, C. Soldani, and L. Mathy, “Fast

userspace packet processing,” in Process.

Eleventh ACM/IEEE Symp. ANCS ’15, IEEE

Computer Society, pp. 5-16, 2015.

[3] D. Cerovic, V. D. Piccolo, A. Amamou, K.

Haddadou, and G. Pujolle, “Fast packet

processing: A survey,” IEEE Commun. Surv.

Tuts., vol. 20, no. 4, pp. 3645-3676, 4
thQuart.,

2018.

[4] J. Garcia-Dorado, F. Mata, J. Ramos, P.

Santiago del Rio, V. Moreno, and J. Aracil,

“High-performance network traffic processing

using commodity hardware,” Data Traffic

Monitoring and Anal., 2013.

[5] J. H. Salim, “When NAPI comes to town,”

Linux 2005 Conf., 2005.

[6] S. Han, K. Jang, K. Park, and S. Moon,

“PacketShader: A GPU-Accelerated software

router,” ACM SIGCOMM Comput. Commun.

Rev., Aug./Sep. 2010.

[7] G. Liao, Z. Zhu, and L. Bhuyan, “A new server

I/O architecture for high speed networks,” in

Proc. Symp. High-Performance Comput.

Architecture, 2011.

[8] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang,

and K. Park, “APUNet: Revitalizing GPU as

packet processing accelerator,” 14
thUSENIX

Symp. Netw. Syst. Design and Implementation,

Mar. 2017.

[9] https://www.dpdk.org/ecosystem/#support,

(accessed in Sep. 2019)

[10] A. Yemelianov, “Introduction to DPDK:

Architecture and principles,” in https://blog.

selectel.com/introduction-dpdk-architecture-princ

iples/, Nov. 2016.

[11] DPDK Programmer’s Guide, Rel. 19.08.0,

http://fast.dpdk.org/doc/pdf-guides/prog_guide-m

aster.pdf, (accessed in September, 2019)

[12] A. Burakov, “Memory in DPDK, Part 1:

General concepts,” article in https://www.dpdk.

org/blog/2019/08/21/memory-in-dpdk-part-1-gen

eral-concepts/, Aug. 2019.

[13] ODP (Open Data Plane), https://opendataplane.

org

[14] ODP User Guide, https://opendataplane.github.i

o/odp/users-guide/, (accessed in Sep. 2019)

[15] OFP (Open Fast Path), https://openfastpath.org,

(accessed in Sep. 2019)

[16] “6WINDGate – Architecture Overview,” white

paper downloadable in https://www.6wind.com/

wp-content/uploads/2018/10/1-6WINDGate-Arc

hitecture-Overview-1.pdf

[17] FD.io (Fast Data Input Output), https://fd.io,

(accessed in Sep. 2019)

[18] FD.io white paper for VPP, https://fd.io/wp-

content/uploads/sites/34/2017/07/FDioVPPwhite

paperJuly2017.pdf

[19] L. Rizzo, “netmap: A novel framework for fast

packet I/O,” in Proc. 2012 USENIX Conf.

Annu. Technical Conf., Jun. 2012.

[20] L. Hao, “Embedded network architecture

optimization based on DPDK,” PPT

downloadable in https://www.dpdk.org/wp-con

tent/uploads/sites/35/2018/06/DPDK-China2017-

Lin-Telco-Data-Plane-Status.pdf

[21] S. Garzarella, G. Lettieri, and L. Rizzo,

“Virtual device passthrough for high speed VM

networking,” ACM/IEEE Symp. Architectures

for Netw. and Commun. Syst. (ANCS), May

2015.

www.dbpia.co.kr

논문 / 데이타 인 가속화 기술들에 한 기술 동향 망

59

[22] V. Maffione, L. Rizzo, and G. Lettieri,

“Flexible virtual machine networking using

netmap passthrough,” IEEE Int. Symp. Local

and Metropolitan Area Netw. (LAN/MAN), Jun.

2016.

[23] R. Russel, “virtio: Towards a De-Facto standard

for virtual I/O devices,” ACM SIGOPS Op. Sys.

Rev., vol. 42, no. 5, pp. 95-103, Jul. 2008.

[24] L. Deri, “Improving passive packet capture:

Beyond device polling,” in Proc. SANE, 2004,

downloadable in http://luca.ntop.org/Ring.pdf

[25] L. Deri, “ncap: Wire-speed packet capture and

transmission,” in IEEE End-to-End Monitoring

Techniques and Serv., pp. 47-55, 2005.

[26] ntop, https://www.ntop.org/products/packet-capt

ure/pf_ring/, (accessed in Sep. 2019)

[27] IO Visor open source project, https://www.iovis

or.org/technology/xdp, (accessed in Sep. 2019)

[28] T. Herbert and A. Starovoitov, “eXpress data

path (XDP) : Programmable and high

performance networking data path,” presentation

file downloadable in https://github.com/iovisor/

bpf-docs/blob/master/Express_Data_Path.pdf

[29] T. Høiland-Jørgensen, J. D. Brouer, D.

Borkmann, J. Fastabend, T. Herbert, D. Ahern,

and D. Miller, “The eXpress data path: Fast

programmable packet processing in the

operating system kernel,” in CoNEXT ’18: Int.

Conf. Emerging Netw. Experiments and

Technol., Heraklion, Greece, Dec. 2018.

[30] http://shader.kaist.edu/packetshader/index.html,

(accessed in Sep. 2019)

[31] S. Pope and D. Riddoch, “Introduction to

OpenOnload,” white paper downloadable from

http://www.moderntech.com.hk/sites/default/files

/whitepaper/SF-105918-CD-1_Introduction_to_O

penOnload_White_Paper.pdf

[32] T. Marian, K. Lee, and H. Weatherspoon,

“NetSlices: Scalable multi-core packet

processing in user space,” in Proc. Eighth

ACM/IEEE ANCS’12, Austin, TX, USA, Oct.

2012.

[33] N. Shah and J. Motvani, “Linux forwarding

stack fastpath,” PPT downloadable in https://

netdevconf.org/1.2/slides/oct7/03_Linux_Forwar

ding_Stack_Fastpath.pdf in Netdev 1.2, Tokyo,

Japan, 2016.

[34] D. Pino, “Snabb – A toolkit for user-space

networking,” presentation in FOSDEM 2018,

PPT in https://www.slideshare.net/igalia/snabb-

a-toolkit-for-userspace-networking-fosdem-2018

[35] FastDataStacks, https://wiki.opnfv.org/display/fd

s, (accessed in Sep. 2019)

[36] Open Platform for NFV (OPNFV), www.opnfv.

org, (accessed in Sep. 2019)

[37] NetFPGA, https://netfpga.org/site/#/, (accessed

in Sep. 2019)

[38] N. Zilberman, Y. Audzevich, G. Kalogeridou,

N. M. Bojan, J. Zhang, and A. W. Moore,

“NetFPGA – Rapid prototyping of networking

devices in open source,” SIGCOMM ’15, Aug.

2015.

[39] K. Deierling, “What is a SmartNIC?,” blog in

https://blog.mellanox.com/2018/08/defining-smar

tnic/, Aug. 30, 2018.

[40] K. Deierling, “Achieving a cloud scale

architecture with SmartNICs,” blog in

https://blog.mellanox.com/2018/09/why-you-nee

d-smart-nic-use-cases/, Sep. 11, 2018.

[41] D. Firestone, A. Putnam, S. Mundkur, D.

Chiou, A. Dabagh, M. Andrewartha, H.

Angepat, V. Bhanu, A. Caulfield, E. Chung, H.

K. Chandrappa, S. Chaturmohta, M. Humphrey,

J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J.

Padhye, G. Popuri, S. Raindel, T. Sapre, M.

Shaw, G. Silva, M. Sivakumar, N. Srivastava,

A. Verma, Q. Zuhair, D. Bansal, D. Burger, K.

Vaid, D. A. Maltz, and A. Greenberg, “Azure

accelerated networking: SmartNICs in the

public cloud,” in NSDI USENIXAssociation,

2018.

[42] D. Lee, J. Park, C. Hiremath, J. Mangan and

M. Lynch, “Towards Achieving High

Performance in 5G Mobile Packet Core's User

Plane Function,” white paper in

https://builders.intel.com/docs/networkbuilders/to

wards-achieving-high-performance-in-5g-mobile

-packet-cores-user-plane-function.pdf, 2018.

[43] Y. Le, H. Chang, S. Mukherjee, L. Wang, A.

Akella, M. Swift, and T. V. Lakshman, “UNO:

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '20-01 Vol.45 No.01

60

unifying host and smart NIC offload for

flexible packet processing,” SoCC'17, Sep.

2017.

[44] B. Stephens, A. Akella, and M. Swift, “Your

programmable NIC should be a programmable

switch,” HotNets-XVII, Nov. 2018.

[45] J. H. Ryu, W. S. Kim, and C. H. Yoon, “A

technical trend and prospect of software defined

network and OpenFlow,” KNOM Rev., vol. 15,

no. 2, pp. 1-24, Dec. 2012.

[46] 6WIND Speed Series Performance Validation in

SDxCentral, Sep. 2015, downloadable in https://

www.6wind.com/wp-content/uploads/2016/03/

Final-SDxCentral-6WIND-Speed-Series-Perform

ance-Report.pdf

[47] Samsung Electronics Co., Ltd., “5G Core

Vision: Revolutionary changes in core with the

arrival of 5G,” white paper in https://images.

samsung.com/is/content/samsung/p5/global/busin

ess/networks/insights/white-paper/5g-core-vision

/5G_Core_Vision_Technical_Whitepaper.pdf,

2019.

[48] Huawei Technologies, Co., Ltd., “5G Network

Architecture: A High-Level Perspective,” white

paper in https://www.huawei.com/minisite/hwm

bbf16/insights/5G-Nework-Architecture-Whitepa

per-en.pdf, 2016.

[49] Press Release, https://www.thefastmode.com/tec

hnology-solutions/6757-samsung-sk-telecom-co

mplete-poc-on-vepc-in-sdn-based-network

[50] Press Release, https://www.nec.com/en/press/20

1603/global_20160311_02.html

김 용 근 (Yongkeun Kim)

1988년 2월 : 아주 학교 자

계산학과 학사

1990년 2월 : 아주 학교 컴퓨

터공학과 석사

1990~1998 : 용정보통신(주)

선임연구원

1995년 : 자계산조직응용기술사

1998년~2001년 : Lucent Technologies 부장

2001년~2002년 : Jetstream Comm. 이사

2003년~2018년 : 6WIND S.A. 부사장

재 : 코리아퀘스트(주) 표이사

2019년 9월~ 재 : 동서울 학교 정보통신과 겸임교수

< 심분야> 네트워크가상화, 고속패킷처리, 네트워

크보안

[ORCID:0000-0001-7930-5680]

www.dbpia.co.kr

	A Technical Trend and Prospect of Data Plane Acceleration Technologies
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. General Packet Processing and Its Issues
	Ⅲ. Techniques for Fast Packet Processing
	Ⅳ. Technologies for Data Plane Acceleration
	Ⅴ. Conclusion
	References

