Correlated Superposition Coding for 3-User NOMA

Kyuhyuk Chung*

Abstract

In this letter, the authors propose the correlated superposition coding (SC) for 3-user non-orthogonal multiple access (NOMA). It is shown that the proposed SC not only achieves the near-perfect successive interference cancellation (SIC) bit error-rate (BER) performance, but also mitigates the performance degradation in the standard 3-user NOMA. In result, the correlated SC could be a promising SC for NOMA.

Key Words : NOMA, superposition coding, SIC, power allocation, correlation coefficient.

I . Introduction

As a promising new radio (NR) mobile access technology, non-orthogonal multiple access (NOMA) has gained tremendous attention in the fifth generation (5G) mobile communication [1-6]. In NOMA, successive interference cancellation (SIC) is performed at the stronger channel users, to remove the inter-user interference (IUI) due to superposition coding (SC). We present the correlated SC, for the conventional 3-user binary pulse amplitude modulation (2PAM) NOMA.

- Our contributions: 1. The proposed scheme achieves the near-perfect SIC bit error-rate (BER) performance for the stronger channel users. 2. We mitigates the performance degradation for the weaker channel users in the standard 2PAM NOMA.

II. System and Channel Model

Assume that the constant total transmitted power is P, and the power of the user- 1 signal S_{1}, the user-2 signal ${ }^{S_{2}}$, and the user-3 signal s_{3} is normalized as $\mathbb{E}\left[\left|s_{1}\right|^{2}\right]=\mathbb{E}\left[\left|s_{2}\right|^{2}\right]=\mathbb{E}\left[\left|s_{3}\right|^{2}\right]=1$, with the correlation coefficients $\rho_{12}=\mathbb{E}\left[s_{1} s_{2}^{*}\right]$, $\rho_{13}=\mathbb{E}\left[s_{1} s_{3}^{*}\right]$, and $\rho_{23}=\mathbb{E}\left[s_{2} s_{3}^{*}\right]$. The power allocation factors are α and β with $0 \leq \alpha, \beta, \alpha+\beta \leq 1$. Then the superimposed signal is expressed by

$$
\begin{equation*}
x=\sqrt{\alpha P_{A}} s_{1}+\sqrt{\beta P_{A}} s_{2}+\sqrt{(1-\alpha-\beta) P_{A}} s_{3} \tag{1}
\end{equation*}
$$

where the total allocated power P_{A} is given by

$$
\begin{align*}
\frac{P}{P_{A}} & =1+2 \operatorname{Re}\left\{\rho_{12}\right\} \sqrt{\alpha} \sqrt{\beta}+2 \operatorname{Re}\left\{\rho_{13}\right\} \sqrt{\alpha} \sqrt{1-\alpha-\beta} \tag{2}\\
& +2 \operatorname{Re}\left\{\rho_{23}\right\} \sqrt{\beta} \sqrt{1-\alpha-\beta} .
\end{align*}
$$

Before the SIC is performed on the user- 1 and user-2 with the better channel conditions, the received signals of the user- 1 , user- 2 , and user- 3 are represented as, for $i=1,2,3$

$$
\begin{align*}
& r_{i}= \\
& \left|h_{i}\right| \sqrt{\alpha P_{A} s_{1}}+\left|h_{i}\right| \sqrt{\beta P_{A} s_{2}}+\left|h_{i}\right| \sqrt{(1-\alpha-\beta) P_{A} s_{3}}+n_{i} \tag{3}
\end{align*}
$$

where h_{1}, h_{2}, and h_{3} are the channel gains, with $\left|h_{1}\right|>\left|h_{2}\right|>\left|h_{3}\right|, \quad n_{1}, \quad n_{2}, \quad$ and $\quad n_{3} \sim \mathcal{N}\left(0, N_{0} / 2\right)$ are additive white Gaussian noise (AWGN), and N_{6} is one-sided power spectral density. The notation $\mathcal{N}(\mu, \Sigma)$ denotes the normal distribution with mean μ and variance Σ.

III. Correlated Superposition Coding

First, we start the independent SC in the standard 2PAM NOMA, and then design the correlated SC. Let the bits for the user- 1 , user- 2 , and user- 3 be

[^0]$m_{1}, m_{2}, m_{3} \in\{0,1\}$, with
\[

$$
\begin{equation*}
s_{1}, s_{2}, s_{3} \in\{+1,-1\} . \tag{4}
\end{equation*}
$$

\]

Then the independently superimposed signal in the standard 2PAM NOMA can be represented as

$$
\begin{align*}
& x_{s}\left(m_{1}, m_{2}, m_{2}\right)= \\
& (-1)^{m_{1}} \sqrt{\alpha P}+(-1)^{m_{2}} \sqrt{\beta P}+(-1)^{m_{3}} \sqrt{(1-\alpha-\beta) P} \tag{5}
\end{align*}
$$

Note that the order of the 8 superimposed signals changes, dependent on the power allocation.

Now, we design the user- 2 and user- 3 signal, in the power domain, dependent on the standard 2PAM user-1 signal. Thus, the correlated SC is represented by

$$
\begin{align*}
& x_{c}\left(m_{1}, m_{2}, m_{3}\right)= \\
& (-1)^{m_{1}} \sqrt{\alpha P_{A}}+(-1)^{m_{1}} m_{2} \sqrt{2 \beta P_{A}} \tag{6}\\
& +(-1)^{m_{1}}\left(m_{2}+\left(m_{2} \oplus m_{3}\right)\right) \sqrt{2(1-\alpha-\beta) P_{A} / 3} .
\end{align*}
$$

The motivation of the correlated SC is as follows in detail. For the standard independent SC NOMA, for example, the amplitude of the independently superimposed signal is reduced

$$
\begin{align*}
& x_{s}\left(m_{1}=0, m_{2}=1, m_{3}=1\right) \\
& =+\sqrt{\alpha P_{A}}-\sqrt{\beta P_{A}}-\sqrt{(1-\alpha-\beta) P_{A}} . \tag{7}
\end{align*}
$$

Therefore, the correlated SC is designed for the amplitude not to be reduced

$$
\begin{align*}
& x_{c}\left(m_{1}=0, m_{2}=1, m_{3}=1\right) \\
& =+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+\sqrt{2(1-\alpha-\beta) P_{A} / 3} . \tag{8}
\end{align*}
$$

Thus, the SIC BER performance of the user-1 is not degraded by SC. In addition, in order to mitigate the severe performance degradation for the user-3, the bit-to-symbol mapping is carefully designed, for example,

$$
\begin{align*}
& x_{c}\left(m_{1}=0, m_{2}=1, m_{3}=0\right)=+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+2 \sqrt{2(1-\alpha-\beta) P_{A} / 3} \\
& x_{c}\left(m_{1}=0, m_{2}=1, m_{3}=1\right)=+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+\sqrt{2(1-\alpha-\beta) P_{A} / 3} \\
& x_{c}\left(m_{1}=0, m_{2}=0, m_{3}=1\right)=+\sqrt{\alpha P_{A}}+0+\sqrt{2(1-\alpha-\beta) P_{A} / 3} \\
& x_{c}\left(m_{1}=0, m_{2}=0, m_{3}=0\right)=+\sqrt{\alpha P_{A}}+0+0 . \tag{9}
\end{align*}
$$

Note that the $x_{c}\left(m_{1}=0, m_{2}=0, m_{3}=1\right)$ and $x_{c}\left(m_{1}=0, m_{2}=1, m_{3}=1\right)$ for the user-3 bit $m_{3}=1$ do not interfere each other, which prevents the severe performance degradation in the standard NOMA. And for the user-2, above two design rules are applied simultaneously.

IV. BER Derivation

The correlation coefficients of the correlated SC are calculated by

$$
\begin{align*}
\rho_{12} & =\mathbb{E}\left[s_{1} s_{2}^{*}\right] \\
& =\frac{1}{8}(1 \times \sqrt{2}+1 \times \sqrt{2}+0+0) \\
& +\frac{1}{8}(0+0+(-1) \times(-\sqrt{2})+(-1) \times(-\sqrt{2})) \\
& =\frac{1}{8}(4 \sqrt{2}) \tag{10}\\
& =\frac{\sqrt{2}}{2} \\
& =\frac{1}{\sqrt{2}} \simeq 0.7071, \\
\rho_{13} & =\mathbb{E}\left[s_{1} s_{3}^{*}\right] \\
& =\frac{1}{8}(0+1 \times \sqrt{2 / 3}+1 \times \sqrt{2 / 3}+1 \times 2 \sqrt{2 / 3}) \\
& +\frac{1}{8}(0+(-1) \times(-\sqrt{2 / 3})) \\
& +\frac{1}{8}((-1) \times(-\sqrt{2 / 3})+(-1) \times(-2 \sqrt{2 / 3})) \tag{11}\\
& =\frac{1}{8}(8 \sqrt{2 / 3}) \\
& =\sqrt{2 / 3} \simeq 0.8165,
\end{align*}
$$

and

$$
\begin{align*}
\rho_{23} & =\mathbb{E}\left[s_{2} s_{3}^{*}\right] \\
& =\frac{1}{8}(0+0+\sqrt{2} \times \sqrt{2 / 3}+\sqrt{2} \times 2 \sqrt{2 / 3}) \\
& +\frac{1}{8}(0+0+(-\sqrt{2}) \times(-\sqrt{2 / 3})+(-\sqrt{2}) \times(-2 \sqrt{2 / 3})) \tag{12}\\
& =\frac{1}{8}(6 \times 2 / \sqrt{3}) \\
& =\frac{1}{2} \sqrt{3} \simeq 0.8660 .
\end{align*}
$$

Consider Rayleigh fading channels with $\mathbb{E}\left[\left|h_{1}\right|^{2}\right]=\Sigma_{1}, \mathbb{E}\left[\left|h_{2}\right|^{2}\right]=\Sigma_{2}$, and $\mathbb{E}\left[\left|h_{3}\right|^{2}\right]=\Sigma_{3}$. For the
simplification of Rayleigh fading BER performance, we define the notation as

$$
\begin{equation*}
F\left(\gamma_{b}\right)=\frac{1}{2}\left(1-\sqrt{\frac{\gamma_{b}}{1+\gamma_{b}}}\right) . \tag{13}
\end{equation*}
$$

Now, we derive the optimal receiver. The likelihood for the user-1 is expressed as

$$
\begin{equation*}
p_{R_{1} \mid M_{1}}\left(r_{1} \mid m_{1}\right)=\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} \sum_{m_{2}=0}^{1} \sum_{m_{3}=0}^{1} e^{-\frac{\left(r_{1}-\left|m_{1}\right| x_{2}\left(m_{1}, m_{2}, m_{3}\right)\right)^{2}}{2 N_{0} / 2}} . \tag{14}
\end{equation*}
$$

The optimum detection is made, based on the maximum likelihood (ML), as

$$
\begin{equation*}
\hat{m}_{1}=\underset{m_{1} \in\{0,1\}}{\arg \max } p_{R_{1} \mid M_{1}}\left(r_{1} \mid m_{1}\right) \tag{15}
\end{equation*}
$$

The one exact decision boundary is

$$
\begin{equation*}
r_{1}=0 \tag{16}
\end{equation*}
$$

Then, the decision regions are given by

$$
\begin{cases}m_{1}=0: \quad 0<r_{1} \tag{17}\\ m_{1}=1: & r_{1}<0 .\end{cases}
$$

Therefore, the BER performance for the user-1 is calculated by

$$
\begin{align*}
& P_{e}^{(1 ; \text { correlated NOMA; } M L ; \text { optimal })}=\frac{1}{4} \sum_{m_{2}=0}^{1} \sum_{m_{3}=0}^{1} \tag{18}\\
& F\left(\frac{P_{A}\left(\left(m_{2}+\left(m_{2} \oplus m_{3}\right)\right) \sqrt{2(1-\alpha-\beta) / 3}+m_{2} \sqrt{2 \beta}+\sqrt{\alpha}\right)^{2} \Sigma_{1}}{N_{0}}\right)
\end{align*}
$$

Similarly, the likelihood for the user-2 is expressed as

$$
\begin{equation*}
p_{R_{2} \mid M_{2}}\left(r_{2} \mid m_{2}\right)=\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} \sum_{m_{1}=0}^{1} \sum_{m_{3}=0}^{1} e^{-\frac{\left(r_{1}-\left|m_{1}\right| x_{c}\left(m_{1}, m_{2}, m_{3}\right)\right)^{2}}{2 N_{0} / 2}} . \tag{19}
\end{equation*}
$$

The two approximate decision boundaries are

$$
\begin{equation*}
r_{2}= \pm\left|h_{2}\right| \sqrt{\alpha P_{A}} \pm \frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2} \pm\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3} . \tag{20}
\end{equation*}
$$

Then, the decision regions are given by

$$
\left\{\begin{align*}
m_{2}=0: & r_{2}<+\left|h_{2}\right| \sqrt{\alpha P_{A}}+\frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2}+\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3}, \tag{21}\\
& -\left|h_{2}\right| \sqrt{\alpha P_{A}}-\frac{\left|k_{2}\right| \sqrt{2 \beta P_{A}}}{2}-\left|h_{2_{2}}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3}<r_{2} . \\
m_{2}=1: & r_{2}>+\left|h_{2}\right| \sqrt{\alpha P_{A}}+\frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2}+\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3}, \\
& r_{2}<-\left|h_{2}\right| \sqrt{\alpha P_{A}}-\frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2}-\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3} .
\end{align*}\right.
$$

Therefore, the BER performance for the user-2 is calculated by

$$
\begin{align*}
& P_{e}^{(2 ; \text { correlated NOMA; ML; optimal) })} \\
& \simeq \frac{1}{2} F\left(\frac{P_{A}(\sqrt{\beta / 2})^{2} \Sigma_{2}}{N_{0}}\right) . \tag{22}
\end{align*}
$$

Remark that there are two causes of the approximation; the initial cause is the decision boundary approximation, and the secondary cause is the dominant term approximation. The decision boundary approximation is tolerated by the following observation; the approximate decision boundary $r_{2}=+\left|h_{2}\right| \sqrt{\alpha P_{A}}+\frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2}+\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3}$ is obtained from the equation

$$
\begin{equation*}
p_{R_{2} \mid M_{2}}\left(r_{2} \mid m_{2}=0\right)=p_{R_{2} \mid M_{2}}\left(r_{2} \mid m_{2}=1\right) \tag{23}
\end{equation*}
$$

which is given by

$$
\begin{align*}
& \frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(+\sqrt{\alpha P_{A}}+0+\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(+\sqrt{\alpha P_{A}}+0+0\right)\right)^{2}}{2 N_{0} / 2}} \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{\alpha P_{A}}-0-0\right)\right)^{2}}{2 N_{0} / 2}} \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{\alpha P_{A}}-0-\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \\
& =\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+2 \sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \tag{24}\\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{\alpha P_{A}}-\sqrt{2 \beta P_{A}}-\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{\alpha P_{A}}-\sqrt{2 \beta P_{A}}-2 \sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}}
\end{align*}
$$

Note that, at

$$
\begin{align*}
r_{2} & =+\left|h_{2}\right| \sqrt{\alpha P_{A}}+\frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2}+\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3} \\
& \frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(+\sqrt{\alpha P_{A}}+0+\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left.\left(r_{1}-\left|h_{1}\right| \mid+\sqrt{\alpha P_{A}}+0+0\right)\right)^{2}}{2 N_{0} / 2}} \\
& = \tag{25}\\
& \frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left.\left(r_{1}-\left|h_{1}\right| \mid+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+2 \sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} . \\
& +\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left.\left(r_{1}-\left|h_{1}\right| \mid+\sqrt{\alpha P_{A}}+\sqrt{2 \beta P_{A}}+\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} .
\end{align*}
$$

And the four terms approximated to zero are so small, that we could not obtain the numerical values, for $P / N_{0}=40 \mathrm{~dB}$ in our case. Instead, for $P / N_{0}=20 \mathrm{~dB}=100$, we give the numerical values, at $\quad r_{2}=+\left|h_{2}\right| \sqrt{\alpha P_{A}}+\frac{\left|h_{2}\right| \sqrt{2 \beta P_{A}}}{2}+\left|h_{2}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3}$, with $\alpha=0.1, \beta=0.2$, and $\left|h_{2}\right|=1.0$, as follows
$+\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{a P_{A}}-0-0\right)\right)^{2}}{2 N_{0} / 2}} \simeq 1.9049 \times 10^{-52}$,
$+\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{\alpha P_{A}}-0-\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \simeq 8.4329 \times 10^{-104}$,
$+\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right| \mid\left(-\sqrt{\alpha P_{A}}-\sqrt{2 \beta P_{A}}-\sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \simeq 3.4147 \times 10^{-167}$,
$+\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} e^{-\frac{\left(r_{1}-\left|h_{1}\right|\left(-\sqrt{\alpha P_{A}}-\sqrt{2 \beta P_{A}}-2 \sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)\right)^{2}}{2 N_{0} / 2}} \simeq 8.7810 \times 10^{-253}$.

Therefore, the decision boundary approximation is tolerable. Next, we consider the dominant term approximation. Based on the approximated decision boundaries, the exact $P_{e}^{(2 ; \text { correlated NOMA; } M L ; \text { optimal })}$ is given by

$$
\begin{align*}
& P_{e}^{(2 ; \text { correlated NOMA } ; \text { ML } ; \text { optimal })} \\
& =\frac{1}{4} f\left(0 ; \frac{1}{2} ; 1\right)-\frac{1}{4} f\left(2 ; \frac{3}{2} ; 3\right) \\
& +\frac{1}{4} f\left(0 ; \frac{1}{2} ; 0\right)-\frac{1}{4} f\left(2 ; \frac{3}{2} ; 2\right) \tag{27}\\
& +\frac{1}{4} f\left(0 ; \frac{1}{2} ; 0\right)+\frac{1}{4} f\left(2 ; \frac{1}{2} ; 2\right) \\
& +\frac{1}{4} f\left(0 ; \frac{1}{2} ; 1\right)+\frac{1}{4} f\left(2 ; \frac{1}{2} ; 1\right)
\end{align*}
$$

where

$$
\begin{align*}
& f(A ; B ; C) \\
& =F\left(\frac{P_{A}\left(A \sqrt{\alpha P_{A}}+B \sqrt{2 \beta P_{A}}+C \sqrt{2(1-\alpha-\beta) P_{A} / 3}\right)^{2} \Sigma_{2}}{N_{0}}\right) . \tag{28}
\end{align*}
$$

For $P / N_{0}=40 \mathrm{~dB}$ in our case, with $\alpha=0.1$, $\beta=0.2$, and $\Sigma_{2}=(1.0)^{2}$, we give the numerical values, as follows

$$
\begin{align*}
& \frac{1}{4} f\left(0 ; \frac{1}{2} ; 0\right) \simeq 1.4226 \times 10^{-4} \\
& \frac{1}{4} f\left(0 ; \frac{1}{2} ; 1\right) \simeq 1.4267 \times 10^{-5} \\
& \frac{1}{4} f\left(2 ; \frac{1}{2} ; 1\right) \simeq 5.3514 \times 10^{-6} \\
& \frac{1}{4} f\left(2 ; \frac{1}{2} ; 2\right) \simeq 2.6591 \times 10^{-6} \tag{29}\\
& \frac{1}{4} f\left(2 ; \frac{3}{2} ; 2\right) \simeq 1.6404 \times 10^{-6} \\
& \frac{1}{4} f\left(2 ; \frac{3}{2} ; 3\right) \simeq 1.0812 \times 10^{-6} .
\end{align*}
$$

Based on the above observations, we approximate the BER as the two dominant terms, in the equation (22).

Similarly, the likelihood for the user-3 is expressed as

$$
\begin{equation*}
p_{R_{3} \mid M_{3}}\left(r_{3} \mid m_{3}\right)=\frac{1}{4} \frac{1}{\sqrt{2 \pi N_{0} / 2}} \sum_{m_{1}=0}^{1} \sum_{m_{2}=0}^{1} e^{-\frac{\left(r_{1}\left|m_{1}\right| x_{c}\left(m_{1}, m_{2}, m_{3}\right)\right)^{2}}{2 N_{0} / 2}} . \tag{30}
\end{equation*}
$$

The four approximate decision boundaries are

$$
\begin{align*}
r_{3}= & \pm\left|h_{3}\right| \sqrt{\alpha P_{A}} \pm 0 \pm \frac{1}{2}\left|h_{3}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3} \tag{31}\\
& \pm\left|h_{3}\right| \sqrt{\alpha P_{A}} \pm\left|h_{3}\right| \sqrt{2 \beta P_{A}} \pm \frac{3}{2}\left|h_{3}\right| \sqrt{2(1-\alpha-\beta) P_{A} / 3}
\end{align*}
$$

Therefore, the BER performance for the user-3 is calculated by

$$
\begin{align*}
& P_{e}^{(3 ; \text { correlated NOMA; ML; optimal })} \\
& \simeq F\left(\frac{P_{A}(\sqrt{(1-\alpha-\beta) / 3 / 2})^{2} \Sigma_{3}}{N_{0}}\right) . \tag{32}
\end{align*}
$$

V. Results and Discussions

Assume $\quad \Sigma_{1}=(1.1)^{2}, \quad \Sigma_{2}=(1.0)^{2}$ and $\Sigma_{3}=(0.9)^{2}$, and the constant total transmitted signal power to noise power ratio $P / N_{0}=40 \mathrm{~dB}$, where Σ_{1}, Σ_{2}, and Σ_{3} are chosen for the average standard deviation to be one, and P / N_{0} is selected for the BER performance to be $10^{-4}<P_{o}<10^{-3}$.

In the standard NOMA, SIC is performed on the user-1 and user-2. Then the received signal is given by, if the perfect SIC is assumed,

$$
\begin{align*}
& y_{1}=\left|h_{1}\right| \sqrt{\alpha P} s_{1}+n_{1} \\
& y_{2}=\left|h_{2}\right| \sqrt{\beta P} s_{2}+\left(\left|h_{2}\right| \sqrt{\alpha P} s_{1}+n_{2}\right) . \tag{33}
\end{align*}
$$

Then the ideal perfect SIC BER performance of the user-1 is simply the BER performance of the 2PAM modulation

$$
\begin{align*}
& P_{e}^{(1 ; \text { standard NOMA; perfect SIC } ; \text { ideal })} \\
& =F\left(\frac{\alpha P \Sigma_{1}}{N_{0}}\right) \tag{34}
\end{align*}
$$

The ideal perfect SIC plus maximum likelihood (ML) BER performance $P_{e}^{(2 ; \text { standard NOMA; perfect SIC ideal }+ \text { ML optimal })}$ of the user-2 is given in [7] and the optimal ML BER performance $P_{e}^{(3 ; \text { standard NOMA; ML; optimal })}$ of the user-3 is calculated with the conditional BER performance in [8].

As shown in Fig. 1, the correlated SC NOMA achieves the near-perfect SIC BER performance of the standard NOMA, for the user-1. For the user-2, as shown in Fig. 2, the correlated SC NOMA achieves the near-perfect SIC BER and mitigates the performance degradation of the standard NOMA. As shown in Fig. 3, for the user-3, the correlated SC NOMA mitigates the severe performance degradation of the standard NOMA.

As shown in Fig .2, the severe BER performance degradation of the user-2 occurs the following power

Fig. 1. Comparison of BERs for standard NOMA and correlated NOMA for user-1.

Fig. 2. Comparison of BERs for standard NOMA and correlated NOMA for user-2.

Fig. 3. Comparison of BERs for standard NOMA and correlated NOMA for user-3.
allocation coordinate (α, β),

$$
\begin{equation*}
\alpha=\beta, \quad 0 \leq \alpha+\beta \leq 1 \tag{35}
\end{equation*}
$$

Table 1. Quantitative BER Performance Mitigation

(α, β)	$(0.1,0.1)$	$(0.3,0.3)$	$(0.5,0.5)$
$P_{e}^{(2 ; \text { standard NOMA; perfect SIC ideal }+ \text { ML optimal })}$	0.25	0.25	0.25
	\Downarrow	\Downarrow	\Downarrow
$P_{e}^{(2 ; \text { correlated NOMA; ML; optimal })}$	5.2166×10^{-4}	2.1555×10^{-4}	8.5311×10^{-5}

Therefore, in Fig. 2, the mitigation of the severe BER performance degradation of the user-2 is dependent on the power allocation coordinate (α, β), which is tabulated in Table 1 , quantitatively.

In addition, for the comparison under the various channel environments, we depict the BER

Fig. 4. Comparison of BERs for standard NOMA and correlated NOMA for user-1.

Fig. 5. Comparison of BERs for standard NOMA and correlated NOMA for user-2.
performances with $\quad \Sigma_{1}=(2.1)^{2}, \Sigma_{2}=(0.8)^{2}$ and $\Sigma_{3}=(0.1)^{2}$. As shown in Fig. 4, Fig. 5, and Fig. 6, we observe the similar performances.

Fig. 6. Comparison of BERs for standard NOMA and correlated NOMA for user-3.

VI. Conclusion

We presented the correlated SC, for 3-user NOMA. It was shown that the correlated SC NOMA achieves not only the near-perfect SIC BER performance, but also mitigates the performance degradation in the standard NOMA. As a consequence, the correlated SC could be a promising SC for SIC and IUI suppression.

References

[1] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th VTC Spring, pp. 1-5, 2013.
[2] Z. Ding, P. Fan, and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multipleaccess downlink transmissions," IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010-6023, Aug. 2016.
[3] S. R. Islam, J. M. Kim, and K. S. Kwak, "On non-orthogonal multiple access (NOMA) in 5G systems," J. KICS, vol. 40, no. 12, pp. 2549-2558, Dec. 2015.
[4] M. B. Uddin, M. F. Kader, A. Islam, and S. Y. Shin, "Power optimization of NOMA for multi-cell networks," J. KICS, vol. 43, no. 7, pp. 1182-1190, Jul. 2018.
[5] H. Lim, M. Lee, and J. Lim, "An application of NOMA for CRDSA performance improvement in random access satellite networks," J. KICS, vol. 44, no. 6, pp. 10641071, Jun. 2019.
[6] J. O. Kim, D. K. Hendraningrat, and S. Y. Shin, "A study of NOMA-SSK for solving similar channel gain problem of NOMA users," J. KICS, vol. 45, no. 3, pp. 474-481, Mar. 2020.
[7] K. Chung, "Impact of fading on performance of NOMA weak channel user," J. KICS, vol. 44, no. 10, pp. 1851-1855, Oct. 2019.
[8] K. Chung, "Optimal detection for NOMA with three users," J. KICS, vol. 44, no. 11, pp. 2061-2065, Nov. 2019.

[^0]: - First Author : (ORCID:0000-0001-5429-2254)Department of Software Science, Dankook University, khchung@dankook.ac.kr, 교수, 종신회원 논문번호 : 202004-092-A-LU, Received April 21, 2020; Revised May 15, 2020; Accepted May 20, 2020

