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요 약

본 논문은 리튬이온배터리의 안정성, 신뢰성과 효율성을 높이기위해 BiLSTM 기법을 이용한 전력상태 (SoP,

state of power)-잔존용량 (SoC, state of charge) 공동 추정 기법을 제안하였다. SoP와 SoC는 리튬이온배터리의

성능에 직접적인 영향을 미치므로 SoP와 SoC 개별 추정이 아닌 두 파라미터의 상관 관계를 분석하고, 분석한 결

과를 BiLSTM을 이용하여 학습한 후 공동 추정을 실시하였다. 제안한 알고리즘은 Urban Dynamometer Driving

Schedule 데이터를 이용하여 검증하였으며, 실험 결과 공동 추정의 최소 평균제곱근오차(RMSE)는 14.66으로 기

존 기법의 오차 20.46보다 약 28% 감소하였다.

키워드 : 전력상태, 잔존용량, 공동추정, BiLSTM, 리튬이론배터리

Key Words : State of power(SoP), State of charge(SoC), Co-estimation, BiLSTM, Lithium-ion battery

ABSTRACT

This paper proposes a Lithium-ion battery state-of-charge and state-of-power co-estimation algorithm. In

states co-estimation algorithm, battery state-of-charge is considered in state-of-power estimation and vice versa.

Unlike conventional methods, the proposed method takes into account the effect of the current battery

state-of-power in one-step ahead state-of-charge estimation. Since battery states are not directly measurable, a

bidirectional long-short term memory model is used to co-estimate the states using the measurable battery

parameters (such as voltage and current). The model is trained and tested using Urban Dynamometer Driving

Schedule. The results show that the co-estimating battery state-of-charge and state-of-power has higher accuracy

(approximately 28.35%) than independent estimation.

Ⅰ. Introduction 

SoP is one of the important states of battery to

ensure the safe operation of the battery. Since there

is no sensor available to measure the SoP, it needs

to be estimated[1]. Researches proposed estimation

algorithms to estimate the SoP. Different

general-purpose algorithms mostly used filtering

algorithm such as Kalman filter[2], Particle filter[3,4],

Extended Kalman filter[5], etc. Those algorithms can

precisely estimate the states of the battery. Despite

that, the computational cost is too high due to the
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Fig. 1. The architecture of BiLSTM on estimating the
SoC case

matrix multiplication. Other methods such as

ampere-hour coulomb and open-circuit voltage

methods are conducted due to the excellent

performance in real-time, low computational cost,

easy implementation, high robustness, and easy

implementation. Nevertheless, drawbacks such as

low accuracy and regular calibration requirement

exist if we use these methods in the dynamic

system. TheECM-based method has high accuracy

and robustness. Nonetheless, it requires a highly

accurate battery model otherwise it will not fully

capture the battery characteristic if the battery model

is not accurate[6]. It can be improved by considering

the battery parameters such as voltage diffusion,

voltage polarization, hysteresis, etc. Considering

those parameters every time we need to estimate the

state is time-consuming and computationally

expensive. Machine learning method is well known

for its strong adaptability and high accuracy[7]. On

the other hand, it also has drawbacks such as high

dependency on the order of time-series training data

and high computational complexity. The dependency

on the order of time-series training data and

time-consuming parameter estimation can be solved

by training the data forward and backward using

BiLSTM.

In this paper, the BiLSTM is utilized to estimate

battery SoC and to estimate the battery SoP using

the estimated SoC. Using this method, an estimation

of SoP can be obtained with lower computational

cost compared to the ECM-based SoP estimation

method.

1.1 Overview of BiLSTM
BiLSTM is one of the recurrent neural network

(RNN) type, which is the enhancement of the

LSTM[8-10]. In Fig. 1, BiLSTM architecture is

shown[11]. It consists of the input sequence, BiLSTM

layer, hidden layer, and output layer. The input

sequence consists of a sequence of voltage and

current. These data are loaded to the BiLSTM layer.

In the BiLSTM layer, the learning process is

divided by 2: backward, forward. The weight is

concatenated in the hidden layer. The output consists

of optimum SoC at some time interval. BiLSTM

connects hidden layers forward and backward to the

same output. It also has the same capability with

LSTM wherein it was used to model nonlinear

systems in the BMS model in this study. BiLSTM

is incorporated in this study for two reasons: (1) To

account for the dynamic and non-linearity of the

data and (2) to apply the multi-step forecasting in

order to forecast the SoP for the next time interval.

As like LSTM, BiLSTM requires a huge amount of

data in order to avoid overfitting. This drawback of

BiLSTM can be resolved by limiting the iteration of

the training, or by applying some regularization

method such as dropout[12]. The LSTM has a good

performance for forecasting the SoC using

measurable values since it can capture long-distance

dependencies better. However, LSTM can only

capture the forward behavior of the quantity of the

battery and sometimes the nonlinearity of the battery

quantity behavior cannot correctly be represented

only by having the historical information.

Ⅱ. Proposed SoC and SoP Co-estimation 
Methodology 

The co-estimation of battery SoC and SoP

proposed in this study is shown in Fig. 2.

In step 1: the battery SoC is estimated using

BiLSTM, with current and voltage as the

explanatory variables.

In step 2: the battery OCV is identified using the

normal linear interpolation and extrapolation.

In Step 3 and Step 4: the maximum discharge

current within the voltage and SoC constraints is
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Fig. 2. Flow chart of battery SoC and SoP co-estimation using BiLSTM

predicted by applying the OCV and the estimated

SoC respectively.

In step 5: the SoP is calculated by getting the

minimum of maximum discharge current based on

multiple constraints and multiplied it with minimum

design voltage.

In step 6: the initial SoC and initial SoP are used as

the explanatory variables to update the estimate

SoC. In this step, it is assumed that a previously

obtained SoP is available.

The process from step 2 until step 5 is operated

with updated SoC. The co-estimation utilizes the

relationship between the SoC and SoP. This

estimation is more accurate than estimating the

states individually using different algorithms. The

advantages of using the co-estimation are the list as

follows:

1. The impact of the initial estimates of SoC and

SoP is taken into account. The SoC estimation is

updated with the result of previous SoP estimation,

thus improving the accuracy of the SoC estimation.

2. The impact of SoC on the SoP is taken into

account. The OCV has a direct relationship with the

SoC. In addition to that, the initial SoP also

influences the estimated SoC. That is, the value of

the OCV is updated with the value of the updated

SoC. With the updated SoC and OCV, the accuracy

of the SoP estimation can be significantly improved.

SoP describes the maximum peak of power that

can be distributed without violating some design

constraints. These design constraints are the factors

considered in restricting and maintaining the

discharging power at a certain range. The constraints

are classified into two: 1) constraints that need to be

estimated (such as voltage constraint, and SoC

constraint), and 2) constraints that are already set by

the battery manufacturer called design constraints

(such as power constraint and current constraint).

Step 1: SoC and Voltage Response Estimation

Optimum SoC information used as the

benchmark, and the BiLSTM is expressed as:










 

 
 

(1)

 is the optimum  at time  and  is

the input that consists of vector, also at time . The

input vector is defined as   where

 are the voltage and current at time  ,

respectively. In our UDDS data, we have both
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charging and discharging current. To simplify the

study, we considered only the battery discharge. The

negative values, which are the values below zero,

represents charging current while the values above

zero are the discharging current. In order to get the

optimum forecasting result, the battery cell current

in the UDDS drive cycle data was normalized with

the minimum value set to zero and maximum value

to set to one. That is,

  minmaxmin (2)

where    and  is the normalized

data at time . The battery cell current is forecasted

by using:



 








 





⋯


 





(3)

to obtain

 ,……. (4)

Step 2: Normal Linear Interpolation and

Extrapolation

In Step 2, the open-circuit voltage is computed. It

consists of (1) the process of normal linear

interpolation and extrapolation using estimated SoC

and 2) the output of the process which is the

predicted OCV. The principle of the function is

straightforward. To compute the OCV at any SoC,

we perform table lookup processes using estimated

OCV.

 × (5)

The special cases where the SoC is out of range

also needs to be handled. The lookup table has to

provide a reasonable answer for the SoC that is not

between minimum and maximum SoC. In that case,

it must perform what so-called normal linear

extrapolation[13].

We can compute the OCV with the equation as

follows [13]:

 




(6)

where  is the closest lower value of , and

  is the closest higher value of . If we

need to extrapolate the data outside the table, the

equation is essentially similar to before except we

take the slope instead of taking the two surrounding

points. Since there are no surrounding points, we

take the first two data points in the table to find the

slope. Except that, everything in Eq. (6) is the same.

That is,

 


 (7)

To extrapolate the other end of the table, we take

the closest two points at the end of the table:

 




(8)

Step 3: Maximum Current based on Voltage

Constraint

For the voltage constraint, assume that we have a

very simple cell model. In this model, we set the

voltage as the difference between the open-circuit

voltage evaluated at the present SoC and the product

of cell current and the series resistance of the cell.

  (9)

We can rearrange this expression to compute the

current. The battery cell current is equal to the OCV

minus terminal voltage all divide by resistance.

 


(10)

The maximum discharge current limited by

voltage is calculated as [14]:
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max
 ∆

min
(11)

Step 4: Maximum Current based on SoC

Constraint

For the SoC constraint, we need to consider the

case of constant current over the time interval.

∆  ∆ (12)

The SoC after time interval is equal to the

difference between the current SoC and the product

of the current and the time interval divide by the

capacity. This can be replaced with the SoC that is

estimated in step 1.If the design limits of the future

SoC is always with in the minimum value of SoC

and a maximum value of SoC, the current is

computed by reversing Eq. (12). Thus, enforcing the

design limits[14].

max
 min∆ (13)

Step 5: Maximum Current based on Multiple

Constraint

To compute the peak power, we assume that we

are concerned only with keeping the terminal

voltage of the cell between max and min.The

power constraint is the maximum absolute power

permitted by the load. This can be calculated by

using [14]:

max
 min∆

maxmin

(14)

Peak power is set as unlimited since it does not

consider enforcing design limits on SoC, future SoC,

and the maximum absolute current that designated

by electronic.

We can combine all of those limits enforced at

the same time. Discharging the current at a level

that’s higher than either one of these computations

is not allowed, because if we do so, one of the

design limits will be broken. Thus, leading to cell

damage. The maximum discharge current within the

limits is expressed as:

max
 maxminmax

max
max

 (15)

Based on this expression, we obtained the current

that is closest to zero among all of the limiting

current: based on design limit, SoC constraints, and

voltage constraints. To compute the maximum

charge current, a similar equation is used. The

charging current is always negative. When we want

to find the value that is closest to zero, the

maximum value is used and assigned sense instead

of the minimum value in order to avoid the violation

of any limits. The pack power can be computed by

multiplying the pack current with the minimum

design voltage of every cell in the battery pack. It

compute power by multiplying the limiting factor

that’s based on maximum load power design limit

max
 and multiply the number of cells in series to

get the overall battery pack power level. Each of the

future voltage may be different because of the

different initial SoC and so forth.

max
 minmax

 



max
 ∆ (16)

The SoC estimation and SoP estimation are based

on the battery model that has been collected from

the HPPC. The SoP estimation is based on the

estimated SoC. Over the whole SoC range, the

model parameter of HPPC is identified by the

BiLSTM algorithm.

Step 6: Co-Estimation

When the maximum discharging current is

reduced and the maximum charging current is

maximized, SoC is close to its lower design limit.

On the other hand, when the maximum discharging

current is maximized and the maximum charging

current is reduced, SoC is close to its higher limit.

By mapping the sequences between input and

output, it is able to represent nonlinear dynamic

systems. To apply the BiLSTM on the SoC

estimation, the dataset used to train the network is
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Machine Learning RMSE

BPNN[16] 0.504010

LSTM[17] 0.048916

BiLSTM 0.048606

Table 1. Voltage response fore casting RMSE using
existing machine learning approach

given by:












 
 
 

(17)

 is the optimum SoC at time  and 

is the input that consists of vector at time  . The

input vector is defined as

    max
 , where

  max
  are the voltage,

current, initial estimated SoC and initial estimated

SoP at time , respectively. In the co-estimation

process, it is assumed that a previously obtained

SOP is already available. Otherwise, initial value of

SOP has to be estimated using the conventional

SoC. The new SoC obtained is used to compute the

new OCV by using Normal linear interpolation and

extrapolation Eqs. (6), (7), and (8), in step 2.

Co-estimated OCV is used to compute the maximum

current based on voltage constraint as in Eq. (11).

Parallelly, maximum discharge current based on SoC

constraint is estimated using Eq. (13). The

co-estimated SoP can be obtained by using Eq. (16).

Ⅲ. Simulation Results

3.1 Voltage responses estimation results: 
Step 1

A BiLSTM is able to represent nonlinear dynamic

systems by mapping the sequences between input

and output. To apply the BiLSTM on voltage

response estimation, the dataset used to train the

network is given by:










 

 
 

(18)

where  is the measured voltage value at time

 and  is the input vector at time  . The input

vector is defined as   where

 are the voltage and current at time ,

respectively. To obtain the estimated voltage  at

time  until time , a linear transformation is

performed using a final fully connected layer on the

hidden state tensor  . This is done by follows:

  (19)

where  and  are the fully connected layer’s

weight matrix and biases, respectively.

Forecasting can be performed using single values

or multiple values. The forecasting using single

value is called univariate forecasting while

forecasting using multiple values is called

multivariate forecasting[15]. To verify the accuracy of

BiLSTM in forecasting the battery voltage response,

we applied BPNN and LSTM. To make an equal

comparison, battery voltage and battery current are

used as explanatory variables. In the BPNN

architecture, instead of 100 nodes, 312 nodes are

used since it is the most optimal number of nodes

used in [16].

Table 1 shows the RMSE result of forecasting

voltage response using each of the methods in the

UDDS dataset. As we can see, BiLSTM outperforms

BPNN with a difference of 0.455404 RMSE, while

BiLSTM outperforms LSTM with a difference of

0.6378%. Fig. 3 shows all of the voltage actual

measurements and estimated voltage with BPNN,

LSTM, and BiLSTM. Blackline represents the actual

measurements; yellow line with dashes represent

BPNN; blueline with dashes represent BiLSTM; and

magenta line with dashes represent LSTM. It can be

seen that the whole of the estimated values is

following the actual data.

For further observations, we zoomed the data and

present it in the subfigure. In the zoomed figure we

can see that BPNN has the furthest prediction

compared to BiLSTM and LSTM. However,

between LSTM and the actual, and BiLSTM and the
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Fig. 5. Comparison between SoP estimated by BiLSTM,
HPPC, LSTM and BPNN

Fig. 3. Actual battery voltage response compared with
Forecasted battery voltage response using another machine
learning technique

Fig. 4. Battery cell current comparison between the
HPPC SoC and the BiLSTM estimated SoC

actual. We can see close predictions between both of

the predictions. This is listed in Table 1. That is, the

RMSE of the prediction using LSTM is not that

different from the RMSE of prediction with

BiLSTM.

The voltage response is forecasted by using:



 








 





⋯⋯



 





(20)

Obtaining:

 ⋯⋯  (21)

To provide points of comparison, we took the

RMSE between the forecasted battery voltage

response and the actual battery voltage response.

The RMSE of battery voltage response estimation

for UDDS is 0.048606 RMSE.

3.2 Initial SoC estimation results: Step 1
The RMSE between the estimated SoC using

BiLSTM and the optimum SoC is 0.008054. This is

21.74% less than estimating SoC using LSTM which

only obtained the RMSE of 0.010292. The SoC of

the cell increased by about five percent during each

cycle. We assume that the vehicle was driving

downhill most of the way so it was charge adding

cycle. Between the cycles, the SoC decreased to

about ten percent with intervening discharge pulses.

Overall, the entire normal operating range of this

cell is between ten percent and ninety percent SoC.

Fig. 4 shows the comparison between the estimate

of SoC using HPPC, LSTM, BiLSTM, and BPNN

method. There are a total of 16 cycles. In each

cycle, the SoC is increased around 5% until it

finally drops by around 10% on the cycle transition

until it fully discharged. 70% of the first data are

used for the training. We took the data from 25200

to 25500 to be analyzed. As we can see here the

estimate BiLSTM consistently followed the HPPC

estimate data which we considered as the ground

truth. LSTM estimated around 150 to 240 is below

the benchmark while the BPNN is over the

benchmark. BiLSTM itself seems to be

overestimated with a small gap. Based on the figure,

we can conclude that BiLSTM outperforms the other

machine learning estimator.

3.3 Maximum Current based on Multiple 
Constraint results: Step 5

Fig. 5 is shown to validate that BiLSTM achieved

good accuracy in estimating the SoP. Another

machine learning method such as BPNN[16] and

LSTM[17] are applied. Notice that 70% of first data

are similar since these data use also as the training.

The peak power follows the peak power based on

voltage in the beginning. However, after around six

and a half hours, the SoP starts to follow the peak

www.dbpia.co.kr



논문 / BiLSTM을 이용한 SoC와 SoP 공동 추정

321

Fig. 7. Co-estimated SoP using BiLSTM

Fig. 8. Co-estimated SoP using BiLSTM zoomed figure

Machine Learning RMSE

BPNN[16] 43.424

LSTM[17] 21.314

BiLSTM 20.455

Table 2. RMSE of Initial SoP using an existing machine
learning approach

Fig. 6. Maximum Current based on multiple constraint

power based on SoC. If we look closer to the

zoomed figure, the BiLSTM has a closer line to the

benchmark compared to other machine learning. The

BPNN and LSTM prediction are over the HPPC

estimated until time 160 in the figure. We somehow

expect that the estimated result is under the

benchmark since we don’t want the estimated SoP

higher than the actual SoP which can damage the

cell of the battery. The RMSE comparison is listed

in Table 2.

BiLSTM obtained RMSE of 20.455, the lowest

among the machine learning mentioned in Table 2

which are BPNN and LSTM. BPNN obtained

RMSE of 43.424, which reflects that BPNN

accuracy is not better than LSTM and BiLSTM.

Based on voltage response, SoC and SoP estimation

results are listed in Tables 1 and 2. The BiLSTM

overcome the LSTM by 1-20% less error. Due to

these results, co-estimation is conducted using only

BiLSTM.

3.4 Co-Estimation Results: Step 6
As we can see in Fig. 6, the co-estimation result

is closer to the HPPC which we used as the ground

truth in this case. This co-estimated SoC is used to

compute the OCV using Eqs. (6), (7), and (8). The

new OCV is referred as the co-estimated OCV.

Using the co-estimated OCV and co-estimated SoC,

maximum discharge current based on voltage and

SoC constraints are estimated. The minimum from

the maximum discharge current based on voltage,

SoC, and design constraint is taken.

Fig. 7 shows the co-estimation results compared

to estimation results without the co-estimation and

HPPC. Co-estimated refers to the SoP values after

the co-estimation process. Estimated refer to the SoP

values without the co-estimation process. We can

see that both, the co-estimated and the estimated

algorithm results follow the HPPC curve.

In Fig. 8 we zoomed the data to be analyzed. The

data is taken from around time 25400 seconds in the

data. The co-estimated data overcome the estimated

data without co-estimation. We can see that around

the small pulse in the data 50th to 150th,

co-estimated SoP is close to the HPPC estimate.

Nevertheless, the estimate outside the range

mentioned earlier is having good accuracy also. It

means that estimating using HPPC and BiLSTM

co-estimation has met the agreement. The large gap

between HPPC and the others is due to the poor

SoC estimation using HPPC. Poor SoC estimation

using SoC is shown in Fig. 6. The HPPC method

does not consider the dynamic behavior of the

battery and assumes that the battery is always the

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-02 Vol.46 No.02

322

Data

training

SoC

without

co-estim

ation

SoP

without

co-estim

ation

Co-esti

mate

SoC

Co-esti

mate

SoP

30% 0.030 26.01 0.0102 20.48

60% 0.012 22.35 0.0029 15.04

70% 0.008 20.46 0.0024 14.66

Table 3. SoC and SoP Co-estimation final results

same. However, this is not the case. On the other

hand, the other methods were able to learn and

adapt to the changes in the behavior and

characteristics of the battery.

Table 3 lists the overall results of the estimation.

Using HPPC SoP as a benchmark, the proposed

framework of the co-estimation algorithm can

significantly increase the accuracy by 28.35 %

compared to the previous framework that excludes

the initial SoC and SoP as the explanatory variable.

The RMSE of SoC is 0.0024 by using 70% of the

first data as training. SoP using the co-estimation

algorithm has 14.66 RMSE. Table 6 shows the

initial states and final state estimation result using

30%, 60%, and 70% data as training. It is clear that

the training using more data results in better

accuracy of the estimate.

Ⅳ. Conclusion

The result of this paper addresses the

computational cost problem, and the dynamicity of

the states of battery. SoC and SoP are both

estimated. We have studied the SoP estimations

based on multiple constraints, in two phases. Initial

SoC and SoP joint estimation, and SoC and SoP

co-estimation. First, in the initial SoC and SoP

estimation, we estimate the SoP using the SoC that

is estimated using BiLSTM to capture the

conceptual information from the measurable values.

Using the initial estimated SoC, we compute the

OCV using linear interpolation for the terminal

voltage within the SoC range, and linear

extrapolation for the terminal voltage outside the

SoC range. The OCV is used to calculate the

maximum current based on voltage constraint. The

SoC is also used to calculate the maximum current

by eq (20). Second, in the SoC and SoP

co-estimation, the initial estimated SoP and the

initial estimated SoC used as additional information

alongside the current and voltage to estimate the

final SoC. This final SoC uses to compute the OCV

again to calculate the maximum current based on

voltage constraint. And the SoC use to calculate the

maximum current based on the SoC constraint. The

final SoP obtained by getting the minimum of

maximum current based on voltage, SoC, and design

limit constraint multiplied by minimum design

voltage.
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