
논문 21-46-09-19 The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09
https://doi.org/10.7840/kics.2021.46.9.1497

1497

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology

Research Center) support program(IITP-2021-2017-0-01633) supervised by the IITP(Institute for Information & Communications

Technology Planning & Evaluation).

w First Author : Department of Information Communication Convergence, Soongsil University, Seoul, South Korea, cuonglv@

ssu.ac.kr, 학생회원

° Corresponding Author : School of Electronic Engineering, Soongsil University, Seoul, South Korea, myoo@ssu.ac.kr, 종신회원

논문번호：202106-129-D-RN, Received June 10, 2021; Revised June 17, 2021; Accepted June 17, 2021

컨테이너 기반 네트워크 서비스를 위한 자동화된 테스트

프레임워크

레 반끄엉w, 유 명 식°

An Automated Testing Framework for Container-Based Network

Services

Van-Cuong Lew, Myungsik Yoo°

요 약

NFV(Network Functions Virtualization)는 운영자에게 네트워크 서비스를 위한 매우 유연하고 확장 가능한 인

프라를 제공하는 네트워크 아키텍처이다. NFV 네트워크의 네트워크 기능은 공통 서버에서 구현 및 실행된다. IT

기업들이 서비스 제품을 개발하기 위해 컨테이너형 기술을 사용하는 경향이 증가하고 있다. 따라서 컨테이너 기반

네트워크 서비스 테스트를 자동화하여 검증 속도를 높이고 네트워크 서비스 포설 비용을 절감할 수 있는 새로운

방법이 필요하다. 또한 제품이 포설된 환경에서 컨테이너 기반 네트워크 서비스의 기능 테스트 및 성능 평가를 위

한 자동화된 테스트가 필요하다. 본 논문에서는 컨테이너 기반 네트워크 서비스에 대한 자동화 테스트 프레임워크

를 제안한다. 제안된 프레임워크를 구현하고 테스트함으로써, 제안 프레임워크가 적합성, 상호운용성 및 성능 테스

트를 포함하는 포괄적인 솔루션을 제공하는 것을 보였다.

Key Words : NFV, Container, Testing VNF, Kubernetes, Network Service Mesh

ABSTRACT

Network functions virtualization (NFV) is a network architecture offering operators a highly flexible and

scalable infrastructure for network services. The network functions of an NFV network are implemented and

executed on common servers. There is an increasing tendency for information technology companies to use

containerized technology to develop their service products. Therefore, they need a new method to automate

testing container-based network services to accelerate the verification speed and reduce network service

development cost. There is also a need for automatic function testing and performance evaluation of

container-based network services in production environments. In this paper, we propose an automation testing

framework for container-based network services. By implementing and testing the proposed framework, we

show that the proposed framework provides a comprehensive solution covering conformance, interoperability,

and performance testing.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1498

Fig. 1. Conformance Testing

Ⅰ. Introduction

The European Telecommunications Standards

Institute (ETSI) is helping to define the Network

Function Virtualization (NFV) and related concepts

to provide new approaches to adapt to increasing

requirements to reduce operational and capital

expenditures. Virtual network functions (VNF) in an

NFV network are software that implements and

facilitates network function in virtual machines or

containers on top of shared servers instead of

dedicated hardware[1].

For the NFV environment, VNF testing has

always been considered as one of the key subjects.

A single VNF has to be performed conformance

testing and performance testing. Besides, a VNF

communicates with other VNFs to serve its service

in practice, so that the multiple VNFs also need to

be performed interoperability testing for checking

communication between VNFs. Previous works on

VNF testing have been published[2-4]. In [2], the

study provides the conformance test, but does not

support performance test and interoperability test. In

[3] [4], the studies focus on only performance test,

but do not support conformance test and

interoperability test. In this paper, we aim to provide

an automatic testing solution for container-based

network services framework. It consists of

conformance testing, interoperation testing, and

performance testing for container-based network

services.

The rest of the study is organized as follows.

Section II describes background different types of

testing. Enabler technologies and related works are

presented in Section III. Section IV depicts detail of

the proposed system architecture and the workflows.

Section V shows the experimental results to

demonstrate the proposed solution. Finally, section

VI concludes the paper and discusses future works.

Ⅱ. Background

In this section, we describe three typical types of

VNF testing defined by ETSI[5].

Conformance testing shown in Figure 1 is to

check whether a feature has been implemented

correctly based on a particular standardized

protocol[5]. It also shows whether or not the

implementation in question meets the requirements

specified for the protocol itself.

Figure 2 describes the interoperability testing

presents whether the end-to-end feature of at least

two functions is working as expected. Hence, it can

demonstrate whether a product will work with other

like products[5]. Additionally, it also assesses the

ability of the implementation to support the required

trans-network functionality between itself and

another, similar implementation to which it is

connected.

Performance Testing in the proposed system

considers the number of requests per second and

service latency as metrics. The purpose is to show

how the service latency increases under high load

and then identify the tipping point for the respective

resource configuration. Figure 3 shows an example

result of performance testing.

Fig. 2. Interoperability Testing

Fig. 3. A result example of performance testing

www.dbpia.co.kr



논문 /컨테이너 기반 네트워크 서비스를 위한 자동화된 테스트 프레임워크

1499

Ⅲ. Related Works

OPNFV Yardstick aims to verify infrastructure

compliance when running VNFs[3]. It helps to break

down the VNF performance metrics into various

attribute vectors. But it does not support functional

testing of VNFs. Another tool is OPNFV

Bottlenecks, as called name, its purpose is to find

system bottlenecks by verifying OPNFV

infrastructure in a VNF testing[4]. Its strategy is

embraced with Bottlenecks to benchmark a

deployment. But it is using limitation only on

OPNFV infrastructure. One other effort is V&V

5GTango; it is a testing framework that targets the

5G network with many use cases[6]. However, it also

misses the orchestration and does not cover the

conformance, interoperability, and performance

aspect of VNFs in a Network Server. Furthermore,

all of the above efforts are missing considering

VNFs implemented by containerized technology. It

is important for the road aims to implement

cloud-native network function.

A set of enabler technologies supports the

proposed system becomes feasible.

3.1 Docker
Docker engine is an open-source containerization

platform based on Linux containers for building and

containerizing our application[7]. It extends existing

container technology by providing a single

lightweight container, API for managing Docker

images and execution of container, and even a tool

that allows you to create and spin multi-container

applications. Docker can help us to deploy an

application regardless of environment settings from

one environment to another one. Besides, it can

create any of our network functions in service

function chains as a container. It not only saves

resources but also provides easy deployment.

Docker container relies on the kernel of the host

running the docker engine. It only consumes

resources when they run an application. It is nothing

but a user space of the OS. In the most basic level,

a container is simply a set of processes that are

separated from the rest of the system and run from

a separate image that contains all of the files used

to maintain the processes. The containers running in

Docker share the host OS kernel. It uses Linux

Kernel features such as storage, networking, and

control groups to build containers on top of an

operating system. Docker encloses an application’s

software into a package with everything it needs to

run like OS, application code, Run-time, system

tools, libraries, etc. Hence, the application can run

on any other machine based on the Linux kernel

without any customization.

3.2 Container-based Network Function
Nowadays, there is a tendency in the internet

industry to roll their services out by using container

technology and microservices architecture.

Monolithic virtual network functions (VNFs)

operating in virtual machines are among the current

NFV's drawbacks (VMs)[8]. Users want consistency

with their work in data center clouds, and that

means cloud-native implementations of VNFs.

Breaking up the monoliths into microservices

architecture and implementing them as containers

are a trend. It will make the transition from

hardware appliances to virtualized solutions as

smooth as possible. Implementing container-based

network functions (CNF) is a first step that

eventually would aim to become a cloud-native

network function (CNF). A container-based network

function (CNF) is a container-based application that

implements or provides network functionality, which

runs inside a Linux container. A container-based

network service consists of one or more

microservices container-based network functions. It

includes an immutable infrastructure and declarative

APIs. The network service behavior results from the

combination of the individual network function

behavior and the behaviors of the network

infrastructure that the network service runs on.

3.3 Kubernetes
Kubernetes streamlines the process of

implementing multi-container applications. Using

Kubernetes, operators can fine-tune each container

of services exactly how much resource is allocated

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1500

Fig. 4. Sidecar container pattern

Fig. 5. Init container pattern

for each container and combine different containers

within a single Pod to their work together.

Kubernetes then handles the process of rolling them

out, maintaining them, and ensuring that all the

components remain in sync[9].

At least one master and multiple worker nodes

make up a Kubernetes cluster. In practice, it will

have more masters to guarantee high availability and

load balancing. A set of master nodes called a

control plane is the management layer of

Kubernetes. Basically, the control plane contains a

Kubernetes API server serving the Kubernetes API.

Every communication between Kubernetes

components is through an API server. The API

server communicates with Etcd, a distributed

key-value database, via gRPC protocol. The API

server stores metadata of the API objects in Etcd.

All resources in a Kubernetes cluster are presented

as API objects. The other parts of the control plane

are controllers, which the Kube-controller-manager

executes. The Kube-controller-manager consists of

the different controllers. Each kind of workload

resource has a respective controller providing the

logic of this workload resource. The controller

monitors resource objects through the APIs. In

Kubernetes, controllers play a role as control loops

that watch the cluster's state, then make or request

changes where needed. Specifically, each controller

tries to sync the current state closer to the desired

state. Finally, the control plane contains a scheduler.

It is responsible for scheduling the applications pod

to the appreciated compute nodes. In the same

fashion with controllers, the scheduler monitors the

cluster's state via API for unscheduled Pods, runs

scheduling algorithms, and updates the Pods with

information about the node it was scheduled to.

3.4 Sidecar Container Pattern
A sidecar container is a special container that

accompanies the main container in a given pod. It

helps to extend and enhance the function of the

main container without any complex fixing[10]. The

idea of a sidecar is if something does one thing, it

will do it very well. Containerized technology is to

wrap everything regarding a given application to run

anywhere. Each container of a pod will focus on

only one thing.

We use sidecar containers to monitor the network

service and send logs to the monitor manager.

Figure 4 shown Sidecar container pattern.

3.5 Init Container Pattern
A init container is a specialized container run

firstly in a given Pod. A Pod can have many

containers that run together and one or more init

containers that run before the rest launches[11]. The

init containers always launch to completion, and

each of them must complete successfully before the

other one launches. When a init container fails, the

Node’s kubelet restarts it until it succeeds. Adding

an initContainers field into a Pod description to

define an init container. Init containers support

nearly almost all of the fields of regular containers.

Besides, it does not help livenessProbe,

readinessProbe because it must launch to completion

before the rest of the Pod's containers. Once all of

the init containers launch to completion, kubelet will

launch the rest of the Pod's containers and spins

them as usual.

In the study, we have using init containers for

two use-cases. One is to set up that is not present

in a network service and a web app image. Another

one is to offer a mechanism to block traffic

www.dbpia.co.kr



논문 /컨테이너 기반 네트워크 서비스를 위한 자동화된 테스트 프레임워크

1501

Fig. 6. The proposed framework architecture

generator launch until the network services are ready

to run the test cases. Figure 5 depicts Init container

pattern.

3.6 Network Service Mesh
A service mesh is a dedicated infrastructure layer

for handling service-to-service communication. A

service mesh often sits on top of the Container

Network Interface and builds on its capabilities.

Network Service Mesh is a new manner to address

L2/L3 use cases in the Kubernetes Network

model[12]. It injects sidecar containers to each

network service to communicate with the distributed

network service container plane to provide

functionality as traditional service meshes.

Ⅳ. Proposed System of the Automated 
Testing Framework for Container-based 

Network Service

4.1 Scope of the proposed system
By filling in the gaps in current work[2-4], the

proposed solution aims to have the comprehensive to

automate test container-based network service. The

scope of the proposed system covers multiple types

of testing from the conformance to interoperability,

as well performance testing of container-based

network services. The procedure includes deploying

the system under test a corresponding VNF that

needs to be tested by vendors on the multi-cloud

environment and analyzing data of the network

packages.

4.2 Detail system architecture
The proposed system provides flexible interaction

between components, as shown in Figure 6. Each

component is described as following:

- Network Service is a composition of Network

Functions and defined by its functional and

behavioral specification. A network service can

have multiple VNFs that are connected.

- Tenant provides a set of separate components for

each user based on the Factory pattern. In the

Factory pattern, a new set of objects is created

using a common interface. The tenant plays as a

common interface in the Factory pattern. It will

create a set of new system components that it

manages for each user.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1502

Fig. 7. Overview of the workflow

- An Infrastructure as code (IaC) tool is a consistent

process of managing the IT infrastructure and

provisioning virtualized resources. It helps the

proposed framework automate deploy the System

Under Test and independence of any particular

virtualized infrastructure manager.

- Traffic generator is used to put traffic onto a

network for a network service to consume. For

example, the apache bench tool - an HTTP

benchmarking tool.

- Traffic sink is an end-point that receives traffic

from a traffic generator. For example, a web

application.

- Test Manager maps test description and test script

function to build completed commands that

execute on the traffic generator. Besides, it

provides a profiling format for each test case in

the test description.

- Monitor Manager receives profiling format for

each test case, and reports log from monitor agent

to generate reports.

- Monitor Agents are integrated into each Virtual

Network Function (VNF) of Network Service

(NS) as Sidecar Container and report log of VNF

to Monitor Manager

4.3 Workflow
The core components interaction follows the

“Request-response” paradigms through a

Representational State Transfer (REST) API[13] with

custom JSON message formats. We present a

generic workflow in Figure 7:

1. The user submits a Network Service package

under test via API/CLI gateway (1). The Network

Service package consists of a network function

under test, test description written by YAML

language, and test profiling format. A tenant that

serves to isolate resources for each user will

extract them (2).

2. The tenant will send the configuration under test

description to infrastructure as code tool (3) to

deploy the system under test on the Kubernetes

cluster (4). It also sends the test description to

the Test Manager (5).

3. The Test Manager waits until the system under

www.dbpia.co.kr



논문 /컨테이너 기반 네트워크 서비스를 위한 자동화된 테스트 프레임워크

1503

Entity Details

Compute
Intel(R) Xeon(R) CPU E3-1240

V3 @ 3.40GHz, 8 cores

Memory 24GB DDR3, 1333 MT/s

OS Ubuntu 18.04 LTS, 64 bit

Software

Kubernetes v1.20, Docker 20.10.6,

Network Service Mesh v0.2.0,

haproxy:2.2.11-alpine container

image, NodeJS 10.0

Table 1. Specification of configuration

test has deployed successfully. Test functions

built-in test manager use meta-data in the Test

description as the parameters to generate

completed test scripts. Then the test scripts

execute on the system under test (7). At the same

time, the test profiling format is also informed to

the Monitor Manager to create report results (6).

4. The traffic generator follows the test script to

generate traffic across the system under test. The

monitor agent catches the network package and

extracts needed information. After that, it sends

the report to the Monitor Controller (8). Then the

report result will be generated from the Monitor

Controller and sends to the Tenant (9) to store in

a centralized Database of the proposed system

(10). When everything is finished, the system

under test will be destroyed (11).

Ⅴ. Implementaion and Evaluation

5.1 Configuration of the implementation
We implemented the proposed system using a set

of open sources and technologies. They include

Kubernetes as the target platform for managing

containerized network services, Network Service

Mesh as the virtual infrastructure to provide the

ability to simplify connectivity between workloads

(e.g., network functions) in Kubernetes. Because

HAProxy includes network functions such as load

balancing and caching, we use it as the VNF under

test. And an HTTP Server based on the Node JS

framework is a role of an endpoint server. The

specification of the PC to deploy the experiment is

shown in Table 1. All the connectivity is

non-SSL-based.

The configuration details of the experiment:

- As a role for a traffic generator, we ended up

using the Apache Bench tool because it is a

well-known and stable tool for load testing HTTP

endpoints and provides beautiful summarized

results.

- The L7 load balancing feature of HAProxy is the

VNF under test.

- A NodeJS server responds to the requests sending

via URL paths.

- Our entire infrastructure supports HTTP protocol.

5.2 Results and Evaluation
The connections of the network function under

test for the experiment supported by Network

Service Mesh are shown in Figure 8.

Test network function interoperability in a

network service requires each network function

needs to pass respective conformance testing. In

Figure 8, we depict three network functions are a

load balancing and two web application instances.

The result showing in Figure 9 validates whether the

requests are distributed to two endpoints by the load

balancer network function under test. If the load

balancer has requests and two endpoints also have

requests going through, the load balancer works

correctly[14]. It means that the load balancer passes

its conformance testing. Since two endpoints also

receive the respective requests, the network service

interoperability is also verified.

We run performance testing for the Layer 7 load

balancing network function of HAProxy. In

performance testing, we test the limits of the

resource configurations (compute milicore and

memory) of the network function under test

regarding the number of requests per second and

latency of response. Then, we profile the network

function to find a tipping point of its respective

resource configurations. We can consider the result

to build a strategy to allocate the number of

resources for the network function under test in

production to achieve the best efficiency.

Apache Bench tool provides some of the

parameters used for our load test as following:

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1504

Fig. 8. Connections of component of System Under Test support by Network Service Mesh

Fig. 10. The graph to identify tipping point from the result of the performance testing

Fig. 9. Result of testing load balancing network function

- Concurrency: the number of concurrent requests

that hitting the endpoint

- Number of requests: the total number of requests

of the current load run

We consider the two aspects: the number of

requests per second and latency. The performance

testing results, along with respective resource

configurations, are shown in Figure 10. Load testing

with the Apache bench tool, the goal in mind, is to

find the tipping point. The above graph states that

up until a certain point, if we keep increasing the

www.dbpia.co.kr



논문 /컨테이너 기반 네트워크 서비스를 위한 자동화된 테스트 프레임워크

1505

number of requests, the latency will remain almost

the same. However, after a certain tipping point, the

latency will begin to increase exponentially. It is the

tipping point for a container in a pod with the

respective resource configuration (compute and

memory).

Ⅵ. Conclusion

In this study, we considered the existing efforts

for VNF testing and proposed a framework to

enhance fault prevention in the NFV environment.

By adhering to ETSI standards to ensure future

compatibility, the proposed framework provides a

comprehensive solution covering conformance,

interoperability, and performance testing in the NFV

environment by taking advantage of enabler

technologies. Besides, it offers a flexible approach to

generate test scripts that we can reuse for multiple

use cases. Finally, we implemented the proposed

framework and verified it with a test case.

References

[1] ETSI, “Network function virtualisation (NFV);

Architectural framework,” [Online] https://

www.etsi.org/deliver/etsi\tr/103400\103499/10

3495/01.01.01\60/tr\103495v010101p.pdf.

[2] R. V. Rosa, C. Bertoldo, and C. E.

Rothenberg, “Take your VNF to the gym: A

testing framework for automated NFV

performance benchmarking,” IEEE Commun.

Mag., vol. 55, no. 9, pp. 110-117, Set. 2017.

[3] OPNFV Yardstick, [Online] Available: https://

wiki.opnfv.org/display/yardstick.

[4] OPNFV Bottlenecks, [Online] Available:

https://wiki.opnfv.org/display/bottlenecks.

[5] ETSI, “Network function virtualization (NFV);

Testing methodology; Report on NFV

interoperability testing methodology,” [Online]

https://www.etsi.org/deliver/etsi_gs/NFV-TST/

001_099/002/01.01.01_60/gs_NFV-TST002v01

0101p.pdf

[6] M. Zhao, et al., “Verification and validation

framework for 5G network services and apps,”

NFV-SDN, Berlin, Germany, Nov. 2017.

[7] Docker, [Online] Available: https://docs.

docker.com.

[8] R. Cziva, S. Jouet, K. J. S. White, and D. P.

Pezaros, “Container-based network function

virtualization for software-defined networks,”

ISCC 2015, pp. 415-420, Larnaca, Cyprus, Jul.

2015.

[9] Kubernetes, [Online] Available: https://

kubernetes.io/docs/home/

[10] Sidecar container pattern, [Online] Available:

https://medium.com/bb-tutorials-and-thoughts/k

ubernetes-learn-sidecar-container-pattern-6d8c2

1f873d

[11] Init container pattern, [Online] Available:

https://kubernetes.io/docs/concepts/workloads/p

ods/init-containers/

[12] Network Service Mesh, [Online] Available:

https://networkservicemesh.io/docs/concepts/wh

at-is-nsm/

[13] R. T. Fielding and R. N. Taylor,

“Architectural styles and the design of

network-based software architectures,” Ph.D.

dissertation, Dept. Info. and Comput. Sci.

Univ. California, 2000.

[14] C. Le and M. Yoo, “An extended agent-based

mechanism for testing service function chain,”

2020 ICTC, Jeju, Korea, Oct. 2020.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1506

레 반끄엉 (Van-Cuong Le)

Van-Cuong Le received the

B.Eng. degree in software

engineering from the

University of Science &

Technology, University of Da

Nang, Da Nang City,

Vietnam, in 2018. He is

currently pursuing a master’s degree with Soongsil

University. His research interests include

Software-defined Network/Network Function

Virtualization.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

[ORCID:0000-0002-5578-6931]

www.dbpia.co.kr


	An Automated Testing Framework for Container-Based Network Services
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Background
	Ⅲ. Related Works
	Ⅳ. Proposed System of the Automated Testing Framework for Container-based Network Service
	Ⅴ. Implementaion and Evaluation
	Ⅵ. Conclusion
	References


