

Cavity back 타입의 통합마스트 통신용 UHF/VHF 안테나 개발

정 광 식^{•°}, 이 호 d^* , 이 경 철^{*}, 이 기 d^*

Development of the UHF/VHF Antenna for Cavity Back Type Integrated Mast Communication

Kang-sik Jung^{•°}, Ho-Sub Lee^{*}, Kyoung-Cheol Lee^{*}, Kee-Sung Lee^{*}

요 약

본 논문에서는 Cavity back 타입의 UHF/VHF 대역의 안테나를 통합마스트에 탑재가능한 평면형으로 설계했다. 제안된 안테나는 통합마스트에 적용되는 통신용 안테나로 평판형 형상 설계로 작전능력,생존성 강화의 최적화된 Cavity back 타입의 UHF/VHF 대역의 안테나이다. 기존 다수의 모노폴 형태의 통신용 안테나를 마스트 외관에 불규칙한 형태로 부착된 형태에서 평판형 통신용 안테나를 포함하는 통합 마스트 형상으로 고이득 광대역 안테나 를 개발목표로 한다.

Key Words: UHF, UHF Band Antenna, VHF, VHF Band Antenna, Integrated Communication Antenna System

ABSTRACT

In this paper, Cavity back type UHF/VHF-band antenna was designed in a planar shape on an integrated mast. The proposed antenna is a communication antenna applied to the integrated mast, and it is an Cavity back type UHF/VHF-band antenna that is optimized to enhance operational capability and survivability with a planar shape design. The goal is to develop a high-gain broadband antenna in the form of an integrated mast including a flat-panel communication antenna from a form in which a number of existing monopole-type communication antennas are attached to the mast in an irregular shape.

Ⅰ.서 론

최근 통신용 안테나는 소형화 기술과 함께 광대역 특성을 요구되어진다¹². 실제 함정과 같이 안테나의 설치공간이 제한된 곳에서 주위 구조물에 의한 주요 품질계수인 이득 및 대역폭, 효율의 감소도가 높다¹³. 또한 전기적 소형안테나를 함정에 적용할 경우, 안테 나의 리액턴스 값이 커지게 되어 넓은 대역폭을 확보 하기는 매우 어렵다.[4]

기존 함정에 적용한 안테나는 그림 1.과 같이 외부 에 노출되어 마스트에 불규칙적으로 부착된 안테나에 의해서 함 설치성과 운용, 정비간 효율성이 떨어지게 된다. 이에 본 논문에서는 그림 2.와 같이 통신을 고려 한 통합마스트에 탑재용 UHF/VHF 대역 안테나를 평 면상으로 구성하여 저피탐 외형 구조, 함 설치성 고려, 설치 / 운용 / 정비 효율성을 고려하여 기존 모노폴 구

^{*} 본 연구는 LIG Nex1 자체 선행개발 과제로 수행되었습니다.

^{*°} First and Corresponding Author: LIG Nex1 Co., Ltd., kwangsik.jung@lignex1.com, 정회원

^{*} LIG Nex1 Co., Ltd. hosublee@lignex1.com, 정회원; policelee@lignex1.com, 정회원; keesung.lee@lignex1.com, 논문번호: 202106-118-A-RE, Received June 2, 2021; Revised June 28, 2021; Accepted July 8, 2021

그림 1. 기존함정의 통합통신용 안테나(KDX-Ⅲ급) Fig. 1. Integrated communication antenna of ship (KDX-Ⅲ class)

그림 2. 통합마스트 통신안테나(LIG NEX1) Fig. 2. Integrated mast for communication (LIG NEX1)

조의 안테나를 '복합경사'구조에 포함하는 형태의 Integratved Communication Antenna System (ICAS)^[5]를 개발하였다.

Ⅱ. 안테나 요구조건

국내외에서 ICAS로 많은 연구가 발표되었지만 이 동통신 또는 협대역으로만 연구되어 다양한 통신환경 에 적용하기는 어렵다. 따라서 일반적인 ICAS와 광대 역안테나 특성을 가지는 구조 및 요구조건이 필요하다. 본 논문에서는 VHF 및 UHF 같은 광대역을 포함 하는 통합마스트 통신용 탑재 안테나의 개발 규격을 제안했다. 그림 3와 같이 해외 제품 중 UHF/VHF 주 파수 대역 평판형 안테나로 적용한 네덜란드 탈레스

그림 3. I-MAST 400 Fig. 3. I-MAST 400

사의 I-MAST 400제품군을 참고하여 표 1, 표 2와 같 이 개발 규격을 정의하였다.

특히 통합마스트 통합통신용 탑재 안테나는 복합경 사 구조에 삽입되는 Cavity Back Antenna^[5,6]으로 개 발하여 최종 통합마스트 1면에 각각 2기 안테나가 삽 입되어 360°를 4면으로 구성하는 구조로 최종개발을 목표로 한다.

표 1. 통합마스트 탑재용 안테나 규격(UHF 대역) Table 1. Integrated Mast Antnenna Specification(UHF band)

항목	단위	규격	모노폴 안테나	
주파수	MHz	108~512	108~512	
안테나 수	개	2(4면 8기)	-	
이 득	dBi	-5 이상	-5 이상	
빔 폭	0	45/45 이사	전방향성/20	
(AZ/EL)		15/15 18	1.0 8 0/20	
정재파비	-	3.5:1 이하	3.5:1 이하	
안테나 <i>크</i> 기 (W * D * H)	mm	800*300*800	60*60*1500	
	해외 제	품(I-MAST)		
비고	UHF안테나 주파수: 225~400Hz			
	VHF안테나 주파수: 108~174Hz			

표 2. 통합마스트 탑재용 안테나 규격(VHF 대역) Table 2. Integrated Mast Antnenna Specification(VHF band)

항목	단위	규격	모노폴 안테나	
주파수	MHz	30~88	30~88	
안테나 수	개	2(4면 8기)	-	
이 득	dBi	-15 이상	-5.5 이상	
빔 폭 (AZ/EL)	0	45/45 이상	전방향성/20	
정재파비	-	3.5:1 이하	3.5:1 이하	
안테나 <i>크</i> 기 (W * D * H)	mm	1560*800*1860	85*85*2800	

Ⅲ. 안테나 설계 및 제작

3.1 UHF 안테나 구성

일반적인 UHF대역 안테나는 파장을 고려하여 전 기적소형안테나(Electrically Small Antenna)^[7,8]를 사 용한다. 실제로 함정 같은 제한된 공간에서 100MHz 를 기준으로 파장의 길이가 3m 이상의 물리적 크기를 가지는 매우 큰 안테나를 적용하기는 매우 어렵다. 또 한 일반적으로 전기적 소형안테나는 협대역의 낮은 이득, 높은 리액턴스 특징을 가진다^[8]. 본 논문에서는 구조적 한계를 주파수별 구간을 각각 나누어 새로운 평면 안테나로 기술하였으며, 공간적 제약을 유효한 속성으로 설계하여 소형화 하였다. 또한 정합회로를 적용하여 높은 리액턴스 손실을 최소화한 그림 4.(a) 와 같은 Cavity Back Antenna를 제안한다. 그림 4.(b) 는 안테나의 수직순서도로 최상단의 Radome으로부터 Aperture Patch Antenna, Antenna Element

(a) Cavity Back Antenna 제작 형상(1) (a) Cavity Back Antenna Figuration of fabrication(1)

(b) Cavity Back Antenna 제작 형상(2) (b) Cavity Back Antenna Figuration of fabrication(2)

그림 4. Cavity Back UHF 안테나 Fig. 4. Cavity Back UHF Antenna Assembly, Balun Assembly, Cavity Assembly로 구 성되어 있다. 전체적인 안테나의 외각은 알루미늄 판 제와 브라켓을 사용하여 단단한 외부강도를 유지하도 록 되어있으며,안테나가 방사되는 부분은 테프론 레이 돔을 적용하여 손실을 최소화 하였다.

안테나 소자와 급전부는 알루미늄을 절곡 또는 가 공하였으며 광대역 특성을 위하여 급전부는 에어스트 립라인, 안테나부는 보우타이 방식의 다이폴안테나와 어퍼쳐 패치를 각각 적용하여 제작하였다. 마지막으로 최종적으로 임피던스 메칭을 위하여 Balun은 4:1로 제작하여 정합손실을 최소로 하였다.

3.2 UHF 안테나 설계

통합마스트에 탑재될 제한된 크기에서 안테나 이득 을 높이 위하여 각 주파수를 일종의 계단(다단)의 형 태로 그라운드의 높이와 안테나의 길이,넓이를 적용하 여 정재파비, 이득을 개선할 수 있도록 제안하였으며 그림 5.은 제안하는 안테나의 중요 파라미터를 나타낸

(c) Antenna paramater of L

그림 5. 안테나 설계 파라미터(1)

Fig. 5. Antenna design parameter(1)

것이다. 각각의 파라미터는 주파수 구간을 4등분하여 108~200MHz, 200~300MHz, 300~400MHz, 400~512MHz과 같이 계단 Type로 설정하였다. 그림 5(a), 그림 5(b), 그림 5.(c)를 각각 폭(W), 높이(H), 길이(L)로 나타내었다.

그림 6.은 상부의 패치안테나의 경우 고대역과 저 대역간의 파장길이로 인하여 이중공진으로 인한 방사 패턴의 NULL이 발생 되지 않는 크키로 Aperture 패 치안테나를 제안했습니다. 방사패턴과 이득을 위한 패 치안테나에 대한 파라미터로 가로(Patch_X), 세로 (Patch_Y)로 나타내었다.

Aperture Patch 적용 전후 시뮬레이션 결과값은 그

구 분		Parameter(mm)				
주파수(MHz)		108~200	200~300	300~400	400~512	
	W	W4:375	W3:275	W2:187	W1:130	
Dipole	Н	H4:300	H3:225	H2:200	H1:165	
	L	L4:170	L3:55	L2:40	L1:35	
Patch	Patch_X	145				
	Patch_Y	110				

림 7.와 그림8과 같다. Aperture Patch를 미적용시 400MHz, 512MHz의 방사패턴과 같이 NULL부분을 가질 수 밖에 없다 하지만 그림 8과 같이 Aperture Patch를 적용하여 NULL를 해소하였다.

3.3 VHF 안테나 구성

VHF대역 안테나는 UHF 대역 안테나 개발개념을 전제로 설계 제작하며 그림 9.과 같은 Cavity Back VHF Antenna를 제안한다.

안테나의 수직 순서도로 최상단의 Radome으로부 터 Antenna Element Assembly, Balun Assembly, Cavity Assembly로 구성되어 있다.

전체적인 안테나의 외각은 알루미늄 판제와 브라켓 을 사용하여 단단한 외부강도를 유지하도록 되어있으 며, 안테나가 방사되는 부분은 테프론 레이돔을 적용

(a) Cavity Back 안테나 제작 형상(1) (a) Cavity Back Antenna Figuration of fabrication

(b) Cavity Back Antenna Figuration of fabrication(2)

그림 9. Cavity Back VHF 안테나

Fig. 9. Cavity Back VHF Antenna

하여 손실을 최소화 하였다.

안테나 소자와 급전부는 알루미늄을 절곡 또는 가 공하였으며 광대역 특성을 위하여 급전부는 에어스트 립라인,안테나부는 보우타이 방식의 다이폴안테나 적 용하여 제작하였다. 마지막으로 최종적으로 임피던스 메칭을 위하여 Balun은 4:1(직병렬 R회로)로 제작하 여 정합손실을 최소로 하였다.

3.4 VHF 안테나 설계

그림 10.은 제안하는 VHF대역 안테나의 중요 파라 미터를 나타낸 것이다. 각각의 파라미터는 주파수 파 장 길이를 적용하기 위하여 Corrugate Type로 설정하 였다. 그림 10.(a), 그림 10.(b), 그림 10.(c)를 각각 폭 (W), 높이(H), 길이(L)로 나타내었다.

Corrugate Type로 주름수는 800mmx800mm 외부 크기의 한계를 고려하여 VHF대역의 주파수 파장으로 설계 하였다. 안테나의 H1/H2의 길이 및 Corrugate의 수량은 방사패턴의 외곡을 최소로하는 값을 기준으로 최대값이다. 표 4는 각각의 파라미터는 이득 및 주파 수 공진과 관련한 파라미터이다.

그림 10. 안테나 설계 파라미터 Fig. 10. Antenna design parameter

구 분		Parameter(mm)		
Dipole	Н	H1:320 H2 : 800		
	S	35		
	L	965		
Corrugate		9 (최대수량)		

3.5 UHF 시뮬레이션 및 측정 결과

그림 11와 12. 는 표 3의 안테나 파라미터를 적용 한 시뮬레이션 결과와 측정된 AZ/EL축 방사패턴이다. 최적화된 성능을 위해 AZ/EL축 빔폭이 동일하도록 설계하였다. 비교 결과는 표 5와 같다. 그림 13. (a)는 표 3의 안테나 파라미터를 적용한 정재파비 비교 결 과이다. 동작 주파수 108MHz ~ 512MHz에서 3.5:1 이하의 정재파비 특성을 가진다. 그림 13. (b)는 시뮬 레이션 결과 값과 측정값의 이득을 비교 결과이다.

512MHz

그림 12. UHF 안테나 방사팬터 측정 결과 Fig. 12. UHF Antenna Radiation pattern measurement

그림 13. UHF 안테나 정재파비 & 이득 Fig. 13. UHF Anetnna VSWR & Gain

표 5. UHF 안테나 측정 결과 Table 5. UHF Antenna measurement

P	시뮬레이션 결과				
Freq	HPBW(°)	Gain(dBi)	VSWR		
108Hz	88 / 86	-2.56	13:1		
200Hz	77 / 69	1.44	2.4:1		
300Hz	62 / 72	5.71	1.3:1		
400Hz	54 / 93	4.25	1.6:1		
512Hz	60 / 45	4.48	2.7:1		
비고	이득/VSWR 값에 발룬 미적용				
Ena a	측정 결과				
Freq	HPBW(°)	Gain(dBi)	VSWR		
108Hz	80 / 70	-3.06	3.2:1		
200Hz	75 / 90	1.65	2.6:1		
300Hz	60 / 60	7.04	2.1:1		
400Hz	50 / 45	2.41	1.5:1		
512Hz	45 / 45	5.9	2.3:1		

3.6 VHF M&S 및 측정결과

그림 14와 15.는 표 4의 안테나 파라미터를 적용한 시뮬레이션 결과와 측정된 AZ/EL축 방사패턴이다. 최적화된 성능을 위해 AZ/EL축 빔폭이 동일하도록 설계하였다. 비교 결과는 표 6과 같다.

실제 측정시설은 지상으로 부터 17m 기둥, 송신과 수신 안테나의 300m의 거리의 신호를 수신 받아 비교

그림 14. VHF 안테나 M&S 결과 Fig. 14. VHF Antenna M&S results

측정 이득법으로 측정한 결과입니다.

표 6.	VHF	안테	나 시뮬러	이션	및	측정	결과
Table	96.	VHF	Antenna	meas	ure	ment	

Enar	시뮬레이션 결과					
Tieq	HPBW(°)	Gain(dBi)	VSWR			
30	107 / 99.6	-11.2	15:1			
40	100 / 99.6	-4.4	7.5:1			
50	98.2 / 91.3	-3.76	3.8:1			
60	96.1 / 82.4	-2.65	3.3:1			
70	81.5 / 74.6	-0.28	3.5:1			
88	70.8 / 77.5	3.25	5.2:1			
비고	이득/VSWR 값에 발룬 미적용					
Enar	측정 결과					
Freq	HPBW(°)	Gain(dBi)	VSWR			
30	115 / 90	-12.2	3.1:1			
40	90 / 85	-2.73	3.35:1			
50	90 / 85	1.37	3.1:1			
60	75 / 80	-1.96	2.8:1			
70	75 / 70	1.7	2.7:1			
88	70 / 70	4.09	2.75:1			

UHF대역 안테나 측정 그림 16. Cavity back 안테나 측정사진 Fig. 16. Cavity back Antenna picture of measured

Ⅳ. 결 론

본 논문에서는 통합마스트 탑재용 UHF/VHF 대역 안테나의 소형화 및 모듈화를 구성하는 방법을 제안 하고, 기존 해상용 모노폴 형태 안테나와 동등 이상의 설계 및 측정결과를 제시 하였다. Cavity back 타입의 UHF/VHF 대역 평판형 안테나의 형상 및 구조를 설 계 및 제작하여 광대역 특성을 가지며 높은 이득과 효 율적인 동작특성을 확인하는 통합통신용 평판안테나 를 확인하였으며, 향후 통합마스트 탑재성을 고려하여 본 논문의 기술하는 내용과 최적화 기술 개발하여 UHF 대역과 VHF 대역을 통합하는 안테나 개발에 적 용할 예정이다.

References

- T. A. Rahman, "Reconfigurable ultra wideband antenna and development for wireless communication," *Research Project Vot*, no. 79028, 2008.
- [2] J. Church, J. C. S. Chieh, L. Xu, J. D. Rockway, and D. Arceo, "UHF electrically small box cage loop antenna with an embedded non-foster load," *IEEE Ant. and Wirel. Propag. Lett.*, vol. 13, pp. 1329-1332, 2014.
- [3] R. C. Hansen and R. E. Collin, *Small Antenna Handbook*, 1st Ed., Hoboken, NJ, John Wiley & Sons, 2011.
- [4] E. Öjefors, "Integrated Antennas: Monolithic and Hybrid Approaches," *Uppsala: Acta Universitatis Upsaliensis*, p. 69, 2006.
- [5] D.-G. You, J.-I. Jeon, H.-K. Lee, and H.-K.

Choi, "Design of cavity-backed microstrip dipole array antennas with enhanced front-to-back ratio," *J. KIEES*, vol. 20, no. 1, pp. 37-44, 2009.

- [6] S.-W. Qu, J.-L. Li, Q. Xue, and C. H. Chan, "Wideband cavity-backed bowtie antenna with pattern improvement," *IEEE Trans. Ant. and Propag.*, vol. 56, no. 12, pp. 3850-38584, Dec. 2008.
- [7] R. W. Ziolkowski, "Metamaterial-based efficient electrically small antennas," *IEEE Trans. Ant. and Propag.*, vol. 54, no. 7, Jul. 2006.
- [8] J. Volakis, Richard C. Johnson, and H. Jasik, *Antenna Engineering Handbook*, Fourth Ed., McGraw-Hill Education, 2007.

이 경 철 (Kyoung-Cheol Lee)

2004년 2월: 중앙대학교 전자전기공학부 박사 졸업 2009년 6월~현재:LIG넥스원 C4I연구소 근무 <관심분야> 통신공학, 위성통신, 군통신

이기성 (Kee-Sung Lee)

2014년 8월: 인하대학교 컴퓨터. 정보공학고 박사졸업 2015년 3월~현재:LIG넥스원 C4I연구소 근무 <관심분야> 전자공학, 통신공학, 광통신 공학

정광식 (Kwang-Sik Jung)

2002년 2월:전남대학교 전기 공학과 석사 졸업 2014년 3월~현재:LIG넥스원 C4I연구소 근무 <관심분야> 통신공학, 위성통신, 군통신

이 호 섭 (Ho-Sub Lee)

2014년 8월: 아주대학교 IT융합 공학과 석시졸업 1998년 7월~현재:LIG넥스원 C4I연구소 근무 <관심분야> 통신공학, 위성통신, 군통신