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요 약

현재 감시 카메라는 안전과 보안을 개선하는 데 중요한 역할을 한다. Wi-Fi 카메라는 설치가 쉽기 때문에 널리

사용된다. 그러나 이러한 카메라는 장애물 뒤에 있는 물체를 볼 수 없는 등 시각적 제약이 있다. 또한, 먼지, 조

명, 습기 등과 같은 환경적 요인도 카메라의 가시도에 부정적인 영향을 끼칠 수 있다. 이 문제를 해결하기 위해,

모니터링 영역의 모든 사각지대를 커버하려면 여러 대의 카메라를 사용해야 한다. 그러나 이 방법은 많은 비용이

든다. 그러므로 우리는 은행 사물함, 박물관 및 상점과 같이 도난에 취약한 곳에서 독립적으로 사용할 수 있는

WiSECam (WiFi-Security Enhanced Camera)이라는 저렴하고 응답력이 높으며 효과적인 방법을 제안한다. 이 방

법은 와이파이 신호의 CSI (Channel State Information)를 사용하여 사람의 움직임을 감지한다. 우리는 CSI 데이

터를 처리하고 CNN (Convolutional Neural Network)과 LSTM (Long Short-Term Memory)을 활용하여 딥러닝

모델을 구축한다. 우리는 고려된 실제 시나리오에서 이를 구현하고 평가한다. WiSeCam은 다양한 실생활 설정에

서 1초 응답 시간으로 약 98%의 평균 정확도를 달성하여 실생활에서 사용할 수 있다.

Key Words : Channel State Information (CSI), Wi-Fi monitoring mode, deep learning, Convolutional Neural

Network (CNN), Long Short-Term Memory (LSTM)

ABSTRACT

Nowadays surveillance cameras play an important role in safety and security. In particular, a Wi-Fi camera

is gaining popularity because of its easy installation. However, there is a visibility limitation of existing

commodity cameras, for instance, they can not see an object behind an occlusion. In addition, environmental

factors, such as dust, lighting, and humidity can also adversely affect the camera's visibility. To address these

problems, the prevalent solutions use multiple cameras to cover the entire scene. But it comes with a cost.

We, therefore, propose a cheaper, responsive, and effective solution called WiSECam (Wi-Fi-Security Enhanced

Camera), which can be used as stand-alone in such as bank lockers, museums, and goldsmith stores that are

proneto burglary. Our proposed solution leverages the Channel State Information (CSI) from Wi-Fi signals to

detect human motion. We devise a deep learning model by using the Convolutional Neural Network (CNN)

and Long Short-Term Memory (LSTM) to handle the sequential CSI data. We implemented and evaluated it in
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Fig. 1. A scenario where CSI is used to detect thief
motion.

the considered real-life scenarios. WiSECam achieves an average accuracy of around 98% with 1 second

response time in different real-life settings.

Ⅰ. Introduction

Surveillance cameras are used for security

purposes to monitor people in high secure places or

to prevent crime and terrorism. Nowadays, the

Wi-Fi camera is extensively used because of its easy

installability and portability. However, there are

some inherent limitations of commodity cameras.

Firstly, a single camera cannot cover the entire

scene in the target area and there might be some

blind spots (due to the presence of occlusion).

Secondly, the camera performance is prone to

atmospheric conditions such as dust, lighting, and

humidity, etc. To handle these challenges, multiple

cameras are installed to cover all the blind spots in

the monitoring area. However, such a solution is

costly and requires more care to handle all the

coordinating cameras.

The commodity cameras use 802.11n or 802.11g

Wi-Fi standard. These standards utilize OFDM

subcarriers for data transmission and use CSI to

ensure reliable communication with high data rates

in MIMO systems[1]. The wireless signals when

propagating in a multipath-rich environment produce

multiple reflected copies of the same signal. Such

reflections degrade the channel quality that reflexes

in the CSI signal at the receiver. Therefore, the CSI

data is stimulated by the movements produced by

the people in everyday activities[2]. Fig. 1 presents a

sample application where CSI signals is used to

detect thief motion even he moves behind the

obstacle.

As a matter of fact, CSI in the raw form

encounters a significant amount of variation and it is

hard to choose a correct feature for motion detection

in real-time. Many works related to Wi-Fi-based

human activity recognition have been developed in

the literature. Wang et al[3] use a traditional machine

learning approach named CARM to classify human

activity. The authors have processed the CSI by

filtering its noise using the principal component

analysis (PCA) denoising technique and then

features have been extracted. These features were

then classified for motion detection by different

machine learning techniques such as logistic

regression, support vector machines (SVMs), hidden

Markov model (HMM), and deep learning. In

another work, Long Short-Term Memory (LSTM)

solves this detection problem using a unique additive

gradient structure, which results in a boosted

performance for time series with temporal

dependency such as Wi-Fi CSI signals[4].

Herein, we propose a cheaper, responsive, and

effective solution called WiSECam (WiFi-Security

Enhanced Camera), which can operate with a single

Wi-Fi camera in places such as bank lockers,

museums, and goldsmith stores that are prone to

burglary. We exploit the variation of Channel States

Information (CSI) from a Wi-Fi camera and use a

deep learning model that combines the

Convolutional Neural Networks (CNN) and Long

Short-Term Memory (LSTM) networks to detect

human motion.

The major contributions of our work are

summarized as follows:

We propose deep learning models that exploit a

combination of CNN and LSTM to improve the

effectiveness of CSI-based motion detection. The

CNN can learn CSI features automatically whilst

LSTM processes the CSI data sequentially.

We thoroughly evaluated the accuracy of

WiseCam in diverse and real-life settings. Our
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settings include the effect of multipath by assessing

it in rooms of different sizes, physical activity with

varying intensities, and in the presence (or absence)

of a person moving in the Line-of-sight (LoS).

We structure the remainder of this paper as

follows. We introduce the design of WiSECam and

explain the CSI-based human movement detection in

section II. The experimental settings and results are

thoroughly discussed in section III. Finally, section

IV concludes this paper.

Ⅱ. Overview of Wisecam

In this section, we discuss the building blocks of

WiSECam in detail.

2.1 CSI Data Collection
The CSI signal is vigorously affected by the

multipath effect in indoor environments. This effect

varies with the choice of room (room size), scatters

inside the room (e.g., furniture), and human motion.

To fully evaluate the performance of WiSECam, we

tested our proposed method in 3 rooms. Rooms

consist of different sizes and varied furniture

arrangements. For each room, we conducted 3

physical activities: (1) light physical activity such as

changing a jacket; (2) medium physical activity (i.e.,

moderate walking); and (3) intensive physical

activity (i.e., running, jumping). We collected 40

samples for every activity performed in each room

and recorded each sample for 30 seconds. Our

collected samples were the combination of both

sedentary (initially staying still for 15s) and physical

activity. For the sake of sensitivity analysis, we

tested our system with outside room movement. The

details of the data collection parameters are shown

in Table 1.

Room
Physical

Activities
Movement

Large (6m×8m) Light Inside

Medium (4m×4m) Medium Outside

Small (1.5m×2.8m) Intensive Inside+Outside

Table 1. Testing parameters

2.2 CSI Cleaning
Raw CSI signals contain significant distortion

which should be cleaned before conducting an

evaluation. The data sanitizing step involves the

removal of pilots and DC subcarriers. In particular.

there are a total of 64 CSI subcarriers (52 data

subcarriers, 4 pilots, and 8 DC subcarriers) in 20

MHz bandwidth and 2.4 GHz frequency spectrum.

After sanitizing, we obtain 52 subcarriers amplitude

used for training our deep learning model. Lastly,

the magnitude is extracted from the sanitized CSI

data.

2.3 Convolutional Neural Networks
CNN is widely used for extracting spatial features

from data. It has been successfully applied on CSI

data in localizing the indoor IoT devices[5], indoor

people counting[6], sign language gestures

recognition[7], and human activity recognition[8]. In

this paper, we utilize 1D CNN in our model for

automatically extracting the CSI features in contrast

to statistically defined features that require domain

knowledge and exhaustive effort. Fig. 2 illustrates

the architecture of 1D CNN, consisting of

Convolutional layers, pooling layers, and fully

connected layers. The convolution operation uses a

single filter to compute one feature map, then the

ReLu activation function is used. After that, the

pooling blocks are used to reduce the spatial size,

keeping only optimal features in the feature map.

This makes the system more robust to noise. Based

on the specific application, these basic blocks can be

increased or reduced.

Fig. 2. A sample 1D CNN with 2 convolution layers and
1 fully-connected layer.
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Fig. 4. Block view of LSTM, CNN-LSTM and
LSTM-CNN models

2.4 Long Short-Term Memory Networks
To handle the WiFi CSI time series data, we

apply the LSTM network. Compared with RNNs,

LSTM has memory cells to store and access

information over long periods. As a result, they are

better at finding and exploiting long-range

dependencies in the data. The key component of

LSTM is the cell state, which stores and passes

information between LSTMs. Each LSTM block has

three gates connected to the cell which are Forget

gate, Input gate, and Output gate. Fig. 3 presents a

single LSTM memory block.

Fig. 3. A sample of a single LSTM block.

2.5 The Model
Fig. 4 shows three proposed deep learning models

for CSI-based human motion detection. The input

data is the amplitude of the sanitized CSI (i.e. 52

data sub-carriers) recorded in a sliding window of 1

second. To learn features from the CSI signals, three

layers stacked 1D CNN are used followed by the

Max Pooling layer. The LSTM layer is used to learn

the current state from the past. Finally, the fully

connected layer takes the feature vector and

classifies the user’s state (i.e. whether or not the

user is moving). In this paper, LSTM and CNN

layers are combined to build LSTM model,

CNN-LSTM model, and LSTM-CNN model. These

models are used for comparison in the next section.

For model parameters, we chose 3 1D-CNN

layers with 64 filters, which are the optimal

parameters obtained from Section IV.1, the kernel

size = 3 for extracting the features with information

from the neighboring data, and uses a ReLU

activation function. The pool size is set to 3 for the

Max-pooling layer to highlight the most present

features. For the LSTM layer, we use 100 units to

store the hidden state of the CSI data. After CNN

and LSTM layers, the output is sent to the fully

connected output layer with a Softmax activation

binary classification output, i.e., Static and Dynamic.

For training models, we set the learning rate as

0.0001 for Adam optimizer, minibatch size as 32,

and the training epochs as 200, which are got from

running an optimization framework called Optuna.

We chose these hyper-parameters to be consistent

across all models as these hyper-parameters and had

little impact on performing the respective models.

Ⅲ. Experiment and Results

3.1 Implementation
We used a Raspberry pi 3 (RP3) to extract CSI

raw data from Wi-Fi signals. To handle the CSI

extraction, we modified the WLAN firmware of RP3

using the Nexmons’ open-sourced GitHub

repository[9]. Moreover, we enabled the monitoring

mode feature, then listened to the frames at a

particular UDP socket. Each captured UDP frame

was collected on port 5500 with a source address as

10.10.10.10 and destination address as

255.255.255.255 to extract CSI data.

All the models are built on Keras with

TensorFlow backend. Comparisons are made using

accuracy. Input data for the model is a 1-second

temporal window, which contains 30 frames. Each

frame contains data of 52 subcarriers. After applying

a sliding window to extract 1-second time-series
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Fig. 5. Impact of number of layers and filter size on
accuracy.

Fig. 6. The motion detection accuracy of LSTM,
CNN-LSTM, and LSTM-CNN models. Fig. 7 The detection accuracy in varying room sizes.

data we obtain 40,000 data samples. Those samples

are used for training and testing. We perform

10-fold cross-validation for evaluation. Aggregated

accuracy was derived from the average of all 10

runs.

3.2 Parameters tuning
To optimize the 1D CNN structure, we

investigated the effect of the number of layers and

the number of filter sizes on accuracy. It can be

seen in Fig. 5 that the overall accuracy improves

with the increase in the number of layers (from 1 to

4). It can be also observed that the 2∼3 layers are

most suitable for our application. In addition, by

applying various output filter sizes, we also found

that a filter size of 64 was the best fit for our

purpose. As a result, we use 3 layers for our CNN

model and a filter size of 64 in all the models'

evaluations.

3.3 Overall Accuracy
We present the accuracy attained by various

models in Fig. 6. We can observe that our proposed

CNN-LSTM (97.6%) model outperformed other

DL-based counterparts with LSTM-CNN having

96.8% accuracy and LSTM of 95%. The

performance gain of these models is owing to the

CNN layer that extracts rich features from the CSI

data. We speculate that the CNN-LSTM model

achieved better accuracy than the LSTM model

because of its efficiency in retaining more

information when extracting features from raw CSI

data compared to the LSTM model.

3.4 Accuracy with varying room sizes
We exploited the room size due to the effect of

multipath reflection in the CSI signal caused by

different indoor settings. We conducted our

experiment in three rooms with different sizes,

namely small, medium, and large sizes as in Table

1. In each room, we recorded 40 samples for each

physical activity, and the duration of each sample

was 10 seconds static then next 20 seconds, diverse

physical activity intensities (such as light, medium,

and intensive) were performed. The accuracy results

are shown in Fig. 7.

In all the environmental settings, the CNN-LSTM

model outperformed the other models. We note that

the accuracy in the smaller room is lower than

others because the smaller-sized room has a smaller

spacing between walls. As a result, the CSI data

experiences an unstable behavior due to the severe

multipath effect. When we increase the space

between walls (i.e. larger rooms), a more stable

behavior of CSI leads to higher accuracy.
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Fig. 9. Detect motion with a Person in Non Line of
Sight.

Fig. 10. The detection accuracy with and without and
without a Person-in-Non-Line-of-Sight.Fig. 8. The detection accuracy with varying physical

activities.

3.5 Accuracy with varying physical activities
To measure the sensitivity of WiSECam in

response to the intensity of physical activity, we

conduct our experiment with three types of

activities: (1) light physical activity where the

individual is changing the jacket, (2) medium

physical activity where the user is walking around

the room at a moderate pace, and (3) intensive

physical activity where the user is running.

This experiment aims to measure the sensitivity

of camera detection in response to the intensity of

physical activity. As evident from Fig. 8, the

accuracy of the model is proportional to the intensity

of physical activity. Clearly, the intensive activity

case gets the better accuracy, with the CNN-LSTM

model, we achieve around 98% of accuracy,

whereas, with the medium and light physical

activity, the accuracy is around 95% and 92%

respectively. LSTM and LSTM-CNN models are

about 2% lower in accuracy than the CNN-LSTM

model in each case.

3.6 Accuracy with activity outside the room
To check the robustness of WiSECam, we do the

experiment with and without the movement of

Person in Non-Line-of-Sight (PNLoS). We set up a

person continuously moving across the corridor

when we detect a movement inside the room that is

shown in Fig. 9. It can be seen from the result in

Fig. 10 that compared to a case with PNLoS, the

accuracy of the case without PNLoS improves a

little with a small margin, only 0.2% with the

CNN-LSTM model to around 1.5% with the LSTM

model. Interestingly, the movement outside the room

has little effect on the CSI captured in the room.

Ⅳ. Conclusion

In this paper, we proposed WiSECam, a deep

learning-based lightweight approach for detecting

human movement by analyzing the fluctuations of

CSI data obtained from an AP. Thus, by passively

sensing, a single camera can detect the human

motion in the target scene, even behind the

occlusion. Our extensive results show that

WiSECam can attain an average accuracy of 97.6%

with 1 second of response time, thus making it

feasible to use in real-time.
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