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ABSTRACT

Remaining useful life (RUL) prediction for supercapacitors is particularly important to ensure the safety of

the applied system and reduce the cost of operation. The existing RUL prediction method utilized health

indicators (HIs) that are extracted by a conventional method. This method has the risk of dropping useful

information in the supercapacitor data which leads to low accuracy because of poor quality features. To

resolve this issue, this paper proposes an optimized end-to-end deep learning model for RUL prediction.

Specifically, a genetic algorithm (GA) for automatic feature selection and long short-term memory (LSTM)

network (GA-LSTM) for RUL prediction. GA is utilized for automatic feature extraction which ensures all

important information in the supercapacitor data is considered during HI extraction. The combination of the

best-selected features is used as the input to the LSTM model for final RUL prediction. Our proposed model

achieved a root mean square error (RMSE) of 0.03 unlike the recurrent neural network, LSTM, and deep

convolutional neural network with RMSE of 23.87, 0.51, and 0.38, respectively. When compared with other

models, the overall results show that our model exhibits excellent performance for the RUL prediction of

supercapacitors.

Key Words : Deep Learning, Feature Selection, Genetic Algorithm, Long Short-Term Memory, Remaining

Useful Life, Supercapacitor

Ⅰ. Introduction

Supercapacitors (SCs) are electrical storage

devices with high power density, low internal

resistance, high charge and discharge efficiency,

large charge and discharge current, wide operating

temperature range, and extremely long cycle life[1-5].

The basic structure of the supercapacitor is shown in

Fig. 1. It consists of positive and negative

electrodes, a separator, and the electrolyte (which is

an activated carbon in this case). The positive and

negative charges are stored on the positive and

negative electrodes, respectively, when the

electrodes are connected to an external circuit. The

separator is a membrane that insulates the electrodes

and ensures only the mobility of ions rather than the

electric connection between them. The electrolyte

generates charges opposite to those on the

supercapacitor plates to balance its electric field.

Although the cycle life of supercapacitors is affected

by operating temperature and electrode materials[6],

their cycle life is still longer than that of batteries.

Thus, their application is very extensive. For

instance, they have been extensively used as energy
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Fig. 1. Structure of the supercapacitor.

Fig. 2. Application areas of supercapacitors.

storage devices especially in renewable energy

applications. They have also been used in

communication technology for a) catering for short

duration power peaks in cellular phone transmit

pulses and high-brightness flashes, b) providing

power in pulse applications and telemetry, c)

consumer applications such as cellular phones and

cameras d) system frequency and stability control

devices like the surge protection circuits, and e)

Internet of Energy (IOE). Figure 2 is a simple

graphical visualization of supercapacitors and their

various usage. When a supercapacitor is used as a

part of an electronic system, its remaining useful life

(RUL) affects the safety and reliability of the

system. RUL is the length of time from the current

time to the end of its useful life. Hence, an accurate

RUL prediction will not only maintain the safe

operation of the entire system but will also prevent

physical failure.

In recent years, many interesting studies have

reported different approaches for supercapacitor

RUL prediction. Broadly, these approaches are

divided into two methods: model-based and

data-driven.

Model-based methods utilize mathematical

methods to achieve degradation tracking and

prediction while the data-driven methods do not

require complex mathematical models to simulate

the aging characteristics of supercapacitors. Rather

they heavily rely on and tend to learn from huge

amounts of data. Although these methods over the

years have increasingly yielded good results, they

are mostly based on manual feature extraction.

Manual feature extraction has the risk of dropping

useful information in the data as it is being practiced

by previous studies. In RUL estimation, feature

selection is essential because the RUL prediction

depends on the accuracy of the training model[7],

such that poorly extracted characteristic features may

limit the performance[8].

To proffer a solution to the aforementioned issue,

this study presents an end-to-end deep learning

approach using genetic algorithm (GA) and the long

short-term memory (LSTM) network. In the

proposed GA-LSTM method, GA is used to select

features that have the health indicators that best

describe the supercapacitor’s health condition

thereby eliminating the manual feature selection
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approach. Furthermore, the subset of best-selected

features by the GA is then used as the input to the

LSTM model which is used to predict the final

RUL. The main advantages of the proposed method

are summarized as follows: 1. By utilizing a deep

learning model, this study automates the feature

learning process from the large amounts of charge

data whereby all measured charge data serve as

input to the prediction process. The model by itself

learns all features and determines which subset of

features best describes the supercapacitor’s health

condition. This scheme of processes avoids the

manual feature extraction which has the risk of

dropping useful information in the charge data as it

depends heavily on human labor as already being

practiced by previous studies.

2. The proposed deep learning method with the

aid of its LSTM can learn highly representative

features that carry the most useful information of the

charge data by tracking and remembering the more

important historical degradation information. To the

best of our knowledge, this study is one of the first

to investigate the use of an end-to-end deep learning

method to infer supercapacitor RUL from charge

data.

Ⅱ. Related Works

Various model-based methods have been

previously used in predicting RUL. [9] proposed a

particle-filter-based RUL estimation model for

supercapacitors considering the aging conditions

such as temperature and voltage in the developed

degradation law and prediction according to

capacitance and resistance thresholds both shown to

achieve a higher precision. [10] based on the

classical Arrhenius model, proposed a life cycle

prediction model based on capacity degradation for

supercapacitors. To predict RUL, [11] proposed the

use of an F-distribution particle filter (FPF) and

kernel smoothing (KS) algorithm. Based on the

advantages of FPF and KS, the RUL prediction

performance of the proposed algorithm was good.

The Brownian motion degradation model and

particle filter were used by [12] to achieve online

short-term State of Health (SOH) estimation and

long-term RUL prediction. [13] proposed an RUL

prediction method utilizing Kalman filter and an

improved particle filter (combination of Kalman

filter and particle swarm optimization); which was

used to slow down the particle degradation due to

particle resampling. However, it is important to note

that due to the complex nature of supercapacitors, it

is difficult to model all failure modes and implement

them using the model-based method.

Meanwhile, the data-driven methods majorly learn

from huge amounts of supercapacitor charge data

and have developed rapidly in recent years.

Data-driven methods can be further categorized into

statistical models e.g., Box-cox transformation[14],

and machine learning models e.g., Support vector

machine (SVM),etc[15-20]. [15] applied SVM to

embed diagnosis and prognostics of system health to

estimate the SOH and RUL of lithium-ion batteries.

[16] used a grey support vector machine (GSVM) to

predict Li-ion battery RUL. [17] utilized a fully

connected neural network to predict the life cycle of

battery-supercapacitor hybrid electric vehicles

achieving the supercapacitor RUL prediction using a

short charge-discharge curve. [18] established a

recurrent neural network (RNN) based method to

predict RUL obtaining good results but RNN has the

disadvantage of long-term dependent learning. If

information is stored for a long time, the gradient

will disappear and it cannot continue learning[19].

[20] used the long short-term memory (LSTM)

network, a variant of RNN, to predict the life of

supercapacitors by exploiting it to learn the

long-term dependency of the degraded capacity of

supercapacitors. This singular unique feature of the

LSTM makes it a sought-after model by several

researchers for predicting RUL seeing that most

supercapacitor RUL estimation approaches tend to

learn the supercapacitor’s degraded capacity.

Although this model tends to yield satisfactory

results, the approach and accuracy can still be

further improved because even though LSTM is

used, features are extracted manually.
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Fig. 3. (a) Manual feature selection approach, (b) Proposed deep learning approach.

Ⅲ. Methodology

In this section, the proposed GA-LSTM model is

discussed in detail with highlights on automatic

feature extraction with GA and RUL prediction with

LSTM.

3.1 Automatic feature extraction
Deep learning has broken new grounds that have

led to profound successes in a wide range of

applications. An example is facial recognition in

computer vision. The results produced by deep

learning methods in these applications are in some

cases comparable or even superior to human experts.

Fig. 3 shows an overall system representation and

the main difference between (a) the manual(as used

in other existing studies) and (b) the proposed deep

learning approaches in handling RUL prediction of

supercapacitors. In the manual approach,

characteristic features that are indicative of the

supercapacitor’s health condition (e.g., initial charge

voltage, final charge current, charge capacity, the

sample entropy, and statistics) are manually

identified and extracted from the voltage and current

curves and then fed as input to a machine learning

model. On the contrary, in the proposed deep

learning approach as shown in Fig 3(b), the

complete set of raw data obtained during the

supercapacitor charge process i.e., voltage, current,

time, and energy (as used in this study), is employed

as the input to the deep learning model without the

extraction and selection of characteristic features.

The model by itself learns all features and

determines which subset of features best describes

the supercapacitor’s health condition. This is to

ensure that all important information in the

supercapacitor data is considered during the

extraction. This scheme automates the feature

extraction process thereby avoiding the manual

process and its limitations. It is also worth

mentioning that this is another point where this

study is different from previous studies. While

previous studies do not use all sets of raw data as

they tend to use a subset of raw data based on some

already established principles on factors affecting

supercapacitor cycle life (e.g., voltage, current), our

study uses all sets of raw data allowing the model

to make that choice of selecting a subset of the best

RUL descriptors based on the given data and use the

best-selected features for the final RUL prediction

thereby reaffirm the existing already established

principles.

GA is an adaptive heuristic search algorithm

based on the ideas of natural selection and genetic

evolution, widely used to find the approximate

optimal solution of optimization problems with large

search space, and can be effectively used in the
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Fig. 4. Flow chart of GA.

selection of optimization features[21]. GA encodes a

potential solution of a problem into an individual,

and each individual is an entity with characteristics

of a collection of multiple genes called

chromosomes - the main carrier of genetic

material[22]. Thus, the encoding work which is the

mapping from the phenotype to genotype needs to

be implemented at the beginning. The complexity

involved in copying genetic code is usually

simplified in the form of binary strings, therefore

chromosomes that are closer to the optimal solution

will have a better chance of reproducing[23].

The process flow chart of GA shown in Fig. 3(b)

is further broken down in Fig. 4. The process is

divided into initialization, fitness assessment,

termination condition checking, selection, crossover,

and mutation stages.    represents the

original features set. First, it designs a binary

encoding for each chromosome  that represents a

potential solution to the problem. In the initialization

stage, the population size is set for the population

and a random original population    is

generated. Then the fitness of each chromosome is

evaluated based on the pre-set fitness function. The

fitness function is an assessment index used to

evaluate chromosome performance. The definition of

the fitness function is a key factor affecting

performance[24]. The process of calculating the

fitness function will be used to retain the excellent

solution for further reproduction. High-performing

chromosomes are more likely to be selected multiple

times, while low-performing ones are more likely to

be eliminated. After several rounds of selection,

crossover, and mutation operation; the optimal

chromosome  is obtained. Crossing and mutation

increase the genetic diversity of the population to

exchange the corresponding part of the chromosome

chain and change the gene combination to produce

new offspring. There are many advantages of GA

over traditional optimization algorithms. Two most

notable are: the ability to deal with complex

problems and parallelism. GA can deal with various

types of optimization, whether the fitness function is

stationary or non-stationary, linear or nonlinear,

continuous or discontinuous, or with random noise.

This feature makes it ideal to parallelize the

algorithms for implementation such that different

parameters and even different groups of encoded

strings can be manipulated at the same time[25]. In

this paper,  determination coefficient was adopted

as the fitness function of the GA shown in the

overall system diagram - Fig. 3(b). The

determination coefficient indicates how much

percentage of the fluctuation of Y can be described

by the fluctuation of X, ie., the interpretation degree

of the characteristic variable X to the target value of

Y. The determination coefficient can be described as

follows:

   ∑  

∑  

(1)

where  represents the determination coefficient,

 is the label value,  is the predicted value,  is

the average value, and the value range of  is

   . The larger  is, the stronger the ability of

X to explain Y of this chromosome is, and the more

likely is to be passed on to the next generation.
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Fig. 5. Overall system flow of proposed model.

3.2 RUL estimation
LSTM is a special deep RNN designed to learn

long-term dependencies. It remembers information

for long periods, can discard redundant information

and select key information to be stored in the

internal state. Through this design, the LSTM model

can selectively remember more important historical

information. Thus by utilizing LSTM in the RUL

prediction, the proposed model can learn highly

representative features that carry the most useful

information of the charge data by tracking and

remembering the more important historical

degradation information[26].

The proposed method as shown in Fig. 3(b)

involves three major steps summarized as follows:

3.2.1 Supercapacitor data discretization

All measured large volumes of charge data (in

this case, voltage, current, time, energy, and

capacity) obtained during a supercapacitor partial

charge cycle are discretized into n segments

(corresponding to n equal time intervals),

respectively. The discretized values of the voltage,

current, charge time and energy are denoted as the

inputs to the deep learning method. As such, the

input to the model is a matrix, M, associated with

the discretized values of voltage, current, time and

energy as defined below:

 








⋮





⋮ ⋮





⋮






 (2)

where    and  denote the voltage,

current, charge time and energy respectively.

Meanwhile their corresponding capacity serves as

the true output of the GA-LSTM model.

3.2.2 Feature selection

GA-LSTM is used to select the best features and

learn the relationship between the capacity of the

supercapacitor and its charge-related variables.

3.2.3 Optimization

The end-to-end deep learning approach is

optimized by the optimization effect of GA. Fig. 5

shows the proposed model system flow. Firstly, the

raw data is pre-processed to remove out-liners

before being fed as input to the GA for the selection

of the best features. These selected features form the

RUL descriptors that serve as input to the LSTM

network because they carry the health indicators for

the final RUL prediction. Algorithm 1 gives an

overview of the GA-LSTM model algorithm. GA

has two parameters: M, and . M is population

size, and  is the probability of mutation. CHD

denotes the offspring chromosomes and has

dimensions equal to that of the population (POP). In

this paper, M = 200, = 0.05. In the training

process, the LSTM layer had 50 hidden units with

a 20% dropout, while the training options had

maximum epochs of 250, and Adam optimizer was

utilized. To evaluate the proposed model’s

performance, we used the root mean square error

(RMSE) and the mean absolute percentage error

(MAPE). The RMSE is obtained as:

RMSE  


K



k  

k

lk  l k (3)

where   represents the actual capacity,   is

the estimated capacity and  is the total number of

cycles, and  represents a specific cycle number.
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Algorithm 1. Overview of the GA-LSTM Algorithm

1 Set parameters M, ;

2

Initialize the population POP with M
random solutions, and sets CHD, ,  to {
} (where   and   store the fitness values
of chromosomes in the POP and CHD sets);

3 while Stopping criterion not reached do

4 for  in 1 to M do

5
Evaluate fitness of   and

store
it in  



6   { }, ′  { },;  ;

7 while  ≤  do

8

Apply the tournament selection
method to select two

chromosomes
( and ) from POP, s.t.
 , ∉  are non-zero positive
integers;

9

Apply the single-point crossover
operator on , to

create
two off-spring   and

   ;

10
Apply mutation operation with
probability on   and

   ;

11 Insert  and  into ;

12     ;

13 for  in 1 to M do

14
Evaluate Fitness of   and

store
it in  



15
Select M chromosomes from

POP∪CHD,
and store them in POP

16

return POP;
Input: POP;
Output: Prediction of capacity degradation
or RUL;

17 Split the dataset (POP) into train and test
data;

18
Normalize the data as [0,1] and balance
data;

19

Generate sequence as 3-D array (d, s, f);
∗d = training samples
∗ s = sequence length
∗ f = number of features

20 Select a learning rate for training;

21

Build LSTM network using [2, a, b, 1]
dimensions; 2 input layers, a neurons in
first layer, b neurons in second layer, 1
output layer

22

Train the LSTM network;
for each  in range(epochs) do

model.fit(train_inputs,
train_outputs);
end

23 Predict capacity degradation or RUL;
∗RUL - model.predict(train_inputs)

24 Validate trained model on test data;

25 Evaluate prediction performance

Similarly, the MAPE is obtained as:

MAPE  K



k  

k

lk

l k  l k
(4)

The RMSE represents the average of the errors

and therefore reflects the stability of the model.

MAPE not only considers the error between the

predicted value and the actual value but also

considers the proportional relationship between

them. Hence, the smaller the above error values, the

better the prediction.

Ⅳ. Results and Discussion

The entire supercapacitor dataset consists of 1500

cycles. After feature selection was concluded, GA

selected current and voltage features as the best

features that best describe the capacity degradation

of the supercapacitor with an accuracy of 81.72%.

This further confirms the analysis of aging

characteristics of supercapacitors as carried out by

previous studies which stipulate that the

supercapcitor’s RUL is affected by current, voltage

and, temperature[6,20,27]. It is important to note at this

point that our dataset didn’t contain temperature

data. Each of the selected features was first fed

singly and then combined and fed to the LSTM

network for training and final RUL prediction. Also,

these selected features were each split into training

set and test set three different times by increasing

the number of training set from 30% to 60% to 90%

respectively. The trained model is used for the RUL

prediction of supercapacitors in Fig. 6, and Fig. 7

shows the prediction error. The RUL prediction

results are displayed in Table 1. The results in Table

1 show that predicting RUL with any of the

best-selected features (voltage or current) singly

didn’t show much variance with that of the

combined best features (voltage and current). At

90% training data, the RUL prediction RMSE and

MAPE values were (0.04, 0.0287), (0.03, 0.0263),

and (0.04, 0.0298) for the voltage feature, current

feature, and the combined best features (voltage and

current) respectively. Furthermore, in Table 1

increasing the training dataset from 30% to 60% to

90% saw the RMSE yield the results (0.06 to 0.05

to 0.04), (0.05 to 0.04 to 0.03), and (0.06 to 0.05 to

0.04) for the voltage feature, current feature and the

combined best features (V + I) respectively. Also, a
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Fig. 6. Supercapacitor RUL prediction result.

Fig. 7. RUL prediction errors.

Model

No. of

training

data (%)

RMSE MAPE

GA-LSTM (V)

30 0.06 0.0556

60 0.05 0.0417

90 0.04 0.0287

GA-LSTM (I)

30 0.05 0.0523

60 0.04 0.0399

90 0.03 0.0263

GA-LSTM (V+I)

30 0.06 0.0596

60 0.05 0.0472

90 0.04 0.0298

Table 1. Table showing prediction results of model’s
different training scenarios.

Model RMSE

RNN[18] 23.87

LSTM[20] 0.51

DCNN[28] 0.38

GA-LSTM 0.03

Table 2. Comparison with state-of-the-art models.

similar decreasing trend was observed for the MAPE

values of these features as the number of training

data increased. This shows that increasing the

training dataset didn’t have much corresponding

significant increase in the prediction accuracy. This

is because LSTM is dynamic and able to learn

highly representative features even with a little

amount of training data.

To compare the accuracy of the proposed model

(GA-LSTM), the supercapacitor dataset was trained

with the RNN model and LSTM model. The

prediction results of these models together with the

prediction result of a related deep learning approach

- deep convolutional neural network (DCNN) used

in [28] though trained with a different dataset are

presented in Table 2. The overall RMSE of the

RNN, LSTM, and DCNN models stood at 23.87,

0.51, and 0.38 respectively. It can be observed that

the accuracy of the LSTM model was improved by

the proposed model (GA-LSTM) from 0.51 to 0.03

which is a result of the automated feature selection

effect of the GA. In all, the proposed GA-LSTM

model outperforms the others as its prediction error

did not exceed 1% as shown in Fig. 7.

Ⅴ. Conclusion

This paper proposes an end-to-end deep learning

approach for predicting the RUL of supercapacitors

using GA-LSTM. The proposed method involved

automatic feature extraction of the best RUL

descriptors by the GA and subsequent RUL

prediction by the LSTM. The GA achieved an

accuracy of 81.72% while the overall RMSE of the

model was 0.03. As a result, the proposed model

provides a precise estimation of supercapacitor RUL

with a negligible deviation of 1%. Moreover, the

proposed model was compared with other

state-of-the-art models, which verifies the validity

and applicability of the proposed method.
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