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Decoding Process of RS Codes with Errors and Erasures:
An Overview

Zhi Jing", Hyojeong Choi’, Hong-Yeop Song"
ABSTRACT

This paper provides a comprehensive overview of the hard-decision decoding process of Reed-Solomon
codes for error-and-erasure decoding. For an [n, A RS code, the decoder can correct simultaneously v errors
and u erasures in the received data if 2v+ u < n- k (correctable range) and will fail otherwise (uncorrectable
range). We give detailed reviews of both Berlekamp-Massy and Continued-Fraction algorithms for
error-and-erasure decoding. Berlekamp-Massy algorithm has long been known but sometimes appeared
incorrectly in some references. Continued-Fraction algorithm has been recently applied for error-and-erasure
decoding. Finally, we verify by simulation that two algorithms work exactly the same even in the

uncorrectable range.
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I. Introduction

Reed-Solomon (RS) codes has been widely used
in communications and storage systems'' because
of its Maximum-Distance-Separable (MDS) property
and hence its strong fault-tolerant ability. The most
time-consuming step of the hard-decision decoding
process of RS codes is to find the error-locator
polynomials. Most famous algorithms here are
Berlekamp-Massey (BM) algorithm!*”? and
Continued-Fraction (CF) algorithm[s'“]. The BM
algorithm is computationally efficient in terms of the
number of operations in Fom!), The BM algorithm
is a popular choice to simulate the decoder of RS
codes in software!”. The well-known BM algorithm
has been successfully applied to not only the
error-only case but also the case with both errors

and erasures!”.

For error-only decoding, the less well-known CF
algorithm can be more simply implemented than the
BM algorithm® and was verified theoretically that it
works exactly the same as the BM algorithm when
the received data is in the correctable range®'”.
Recently, the CF algorithm has been successfully
applied to the error-and-erasure case in the 2022
KICS Winter Conference!'!!. It is the main purpose
of this paper that clearly summarize the variations of
these algorithms for both errors and erasures, which
sometimes incorrectly appeared in their descriptions.

In this paper, we consider the hard-decision
decoding of the narrow-sense g-ary [n, A RS codes
with both errors and erasures when ¢=2". When
the received data has no erasures, the decoding
process reduces to the case for error-only decoding.
The decoding process works with g erasures (when
0 <u<nk and successfully finds the correct
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codeword when the number of errors is not
exceeding (n2- k- 1)/2 (correctable range).

The data in uncorrectable range is also another
research point, which affects the decoding
performance. When the received data belongs to
uncorrectable range, it may result in incorrect
decoding or be the data with undetected error. The
probability of undetected error and the probability of
incorrect decoding can be computed by the weigh
distribution of the code in theory. Some researches
of weight distribution were proposed®”. In this
paper, we also verify, by simulation, that the BM
and CF algorithms work exactly the same even in
the uncorrectable range.

Subsection 2.1 reviews the overall decoding
process with both errors and erasures in general. As
one step of the decoding process, BM and CF
algorithms are reviewed in detail in subsection 2.2.
Section IIl discusses the decoding results when the
received data belongs to uncorrectable range.

Section IV is the conclusion.

II. Decoding Process of RS Codes with
Errors and Erasures

2.1 Overall decoding process

We first show the overall hard-decision decoding
process”” for RS codes with errors and erasures in
Fig. 1. Let g)=(z+ a)(z+ &) (z+ ) be the
generator polynomial of a primitive narrow-sense
[n, & RS code over Fym where r=n-kand o is
a primitive element of Fom. Let 1(z) = 1o+ riz+ -
+1,17"" be the received polynomial associated with
a received data r=(ro, 11, ***, I'n1) -

The decoding will start with erasure detection.
When the number of erasures is g, their
corresponding coordinates 7j, b, ***, I, are known to
the decoder. The erasure-locators will be denoted by
Y, = alLY, =a’,..,Y, =a™ When u=0, the
following steps become exactly the same as those
for the error-only decoding. When u>n-4% the
decoding will fail immediately.

Step A. When the received symbol is erased, its
value is undefined and the syndromes cannot be
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Fig. 1. The decoding process for RS code with both
errors and erasures.

calculated. Therefore, we may have to assign some
values to all the erasures so that the syndromes are
calculated and errors are processed. For simplicity,
we set all the erasure values to be zero and the
corresponding received polynomial is denoted by
r£z). This step will be omitted and r{z) becomes the
same as 1(z) if the received data does not have any
erasure.

Step B. The syndrome S, %, .., S is calculated
by r consecutive roots of the generator polynomial
as S=rr(a), for i=1, 2, -, r, and define the
syndrome

S2)=1+S 2+ 8 2+ 57,

If S, &, -, & are all zero, which means r{z) is
a codeword polynomial, then the decoding process
succeeds; else, go on. The modified syndrome

polynomial is given as

T(z) = S5(2) - 1(z) (mod z"*1)
=1+T,-z+T, 2>+ +T, 27,

where

u
‘[(Z)=1_[1+Yl'z
=1
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is the erasure-locator polynomial. Note that 7#(z) =1
when there is no erasure.

Step C. Using modified syndromes 73, 7, -, T,
the error-locator polynomial o(z) of degree v will be
obtained. The BM algorithm and the CF algorithm
will be given in some detail in Subsection 2.2.

Step D. The error-locators will be determined by
Chien search!'” after obtaining the error-locator
polynomial o(z). Chien search is an algorithm that
finds all the roots of the polynomial by substituting
all elements of the field into the polynomial'®. The
error-locators X;, X%, .., X, are the inverses of these
roots.

Step E. The error and erasure values will be
determined by the Forney algorithm™?. The Forney
algorithm obtains the error and erasure values at
known error locations, which is based on Lagrange

[13]

interpolation'’”l. The error value &j, and erasure

value fil is computed as
e, = F(Xi) and fi, = F(Y) ,
for ] <k<vand 1 <7< pu where

Pl = z-Q(z™hH)
(o) = W

Q(z) = 0(2)T(2) (mod x™1),
Y(2) = 0(2)1(2),

and W'(2) is the formal derivative of ¥'(z) with
respect to 2%

Step F. Correct the received data by €j, and fi.

The decoding failure is caused by the following 3
reasons:

Step C cannot determine the appropriate
error-locator polynomial o(z). It happens when x>
n-k or else the output o(z) of Step C has the

n—-k—u
degree exceeding 2

Step D cannot determine the error locations
correctly. It happens when all the roots of o(z) are
not in [Fym,

Step E cannot determine the values of errors and

erasures. The Forney algorithm fails when

Y H=0

2.2 Algorithm of determining the error-locator
polynomial
As the most time-consuming step of the decoding
process of RS codes, we will introduce two
algorithms to determine the error-locator polynomial
o(z): BM algorithm and CF algorithm.

2.2.1 Berlekamp-Massey algorithm

For an [n, k| RS code, the number of the
multiplication (and division) is almost 3r/2 in each
loop of BM algorithm, where r=n-k is the
redundancy of the code. So, the complexity of BM
algorithm is O(Tz).

Example 1. Consider a [7, 3] RS code over IFys

with the generator polynomial

4
s@=]] (+a)

=ad+az+z%+ a3z + 24,

Algorithm 1. The process of determining o(z) based on
BM algorithm with 7{2) and u

1: |Input 75, %, ..., T;, u

2: |itialize k = 0,06@(z) = 1,L® =0,
p©® =z and d©® = Tys1

3: |Increase k by 1. If d*V =0, then
o®(z) = gD (z) 4 dk-Dpk-1(z),
Else,

a®(z) = a*-V(z)

and go to Step 5.

4: |If 2L*k-1D <« [k, then
L) = | — (k-1
and

a*k-D(z
PO = S
and go to Step 6;
Else, go to Step 5.

50 Lt = [k-1 and p®(2) = pk-D(z) - z.

. i
6 lip k <L® + == hen
L®
3
d(k) = Tk+u+1 + z a-j( )Tk+;4+1—j
j=1
and go to Step 3.

7: |Output the error-locator polynomial
0(z) = ™(2) and stop.
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where « is the root of the primitive polynomial 1 +
z+72°. Let the transmitted codeword be

c=(a4, o, 0{5, o, as, a, a).

Suppose that the received data r; contains two

erasures:
4 4 4
n=( £ &, d, d', a b

where f indicates an erasure. The erasure-locators
are ¥Y=a and % =¢° and 7(2) = (1 + az)(1+
a®z) =1+ a’z+ 22

First, we get the modified syndromes

T1 = a4,T2 = (14,T3 == aZ,T4 == (16

Then, the error-locator polynomial is 0(z) =1 +
a*z using BM algorithm as shown in Tab.l.
determined as
X, =(a® )1 =g4, where & is the root of ofz).

Then, the error value is

The error-locator is

X QXY

e =F(X) =——2=1,
J1 ( 1) lPI(Xl—l)

and the erasure values are
fi1 =F(Y)=a’ and fi, = F(Y2) = a.
So, the decoded codeword is

= (a*0,a5 a* a* a,0) + (0,43, 0,0,1,0,a)

5

= (a*,a3,a% a* a’ a,a)

Table 1. The process of the BM algorithm of Example 1.

Algorithm 2. The process of determining o(z) based on
BM algorithm with 7{2) and u

1: |Input 7, B, .., T, ¢

2: |Initialize k = 0,PCV(z) = 1,P©® =1,
r—p
RED(Z) =1+ Z Tup 27 + X 204D,

Jj=1
r—p

RO(z) = z Tyyj 270+ Xz @R+,
=1

3: |Increase k by 1.
coefficient of the highest degree term of R*~1(z)

p®) =
coefficient of the highest degree term of R*~=2)(z)

4: |Obtain the quotient a®(z) and the remainder
R (z) such that

p® . RU=D () = g . Rle=D(7) 4 RUI(7),

where a(k)(Z) must not contain negative powers of
the indeterminate z.

5: |Obtain
PR (z) = a®(z) - PE=D(2) + b®)(2)
- P=2)(z)

6: |If the coefficient of the highest degree term of
R®(2) is not X go to Step 3.

7: |Output the error-locator polynomial ofz) as the

reciprocal polynomial of P®(z) and stop.

corresponding operations of resulting in X when Xis
involved with any value in either addition or
multiplication®.

The most time-consuming step of CF algorithm is
the polynomial division in step 4. For an [n, A RS
code, the complexity of CF algorithm is O(r?),
where r=n-k

For Example 1, we determine the error-locator
polynomial again using the continued fraction
algorithm as shown in Tab.2. The error-locator
polynomial 0(z) = 14+ a*z is the reciprocal

polynomial of PM(2), which is the same as that of
BM algorithm.

Table 2. The process of the CF algorithm of Example 1.

2.2.2 Continued-Fraction algorithm

Here, we use X as an unknown value with
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k g (2) LG p®(2) 4 k R(k)(z) p® | q® (2) p) (2)
0 1 0 z a? 11 Jz;)zzz‘1 +az72+X| — - 1
1 1+ a?z 1 a’z a® z
2 1+atz 1 asz? _ 0 fii—l+aéz—2+X - - 1
1 X-z72 a? z+a z+ a*
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Il. Uncorrectable Error and Undetected
Error

After erasure detection and replacing erasure by
zero, if all syndromes S, &%, -, S that are
calculated by the polynomial r{z) are all zero, then
rfz) is determined as the codeword polynomial and
the decoding process succeeds; else, the received
data has some errors in addition.

The received data can be decoded correctly when
belongs to the correctable range; else the received
data is in the uncorrectable range. These data are
divided into two types:

e data with detected but uncorrectable error;

» data with undetected error.

3.1 Data with uncorrectable error

The received data is the data with detected but
uncorrectable error when the decoding process fails
that is discussed in subsection 2.1. We will show
three examples of the failure of the decoding
process, which happen in Step C, Step D, and Step
E, respectively.

Example 2. In Example 1 we saw that the
transmitted codeword is

c=(a4, of', as, a“, of, a, Q).

Suppose that the received data r, contains one

erasure:
n=(d, &, @, &, d, &, b

where £ indicates an erasure. The erasure-locator
is ¥=2° and T(2) =1+ a’z

First, we get the modified syndromes
T, =a* T, =a® T; = a3 T, = a®. Then, the
error-locator ~ polynomial can be  obtained
0(z) =1+ a*z+ a?z?% using CF algorithm as
shown in Tab.3.

Now, the decoding fails since deg (0' (Z)) =2>

Comparing with the transmitted codeword ¢, the

Table 3. The process of the CF algorithm of Example 2.

k R® (2) p) a(k)(z) P(")(z)
4 1+ abzt+a%z7? - - 1
+adz 3+ X z7*
0 az '+ atz?+alz7d| — - 1
+X-z7*
1 az?+ X273 ab z+a z+a*
2 X-z72 a? z 22+ a*z+a?

received data r, has 3 errors and 1 erasure, which
is out of the correctable range.
Example 3. In Example 1 we saw that the

transmitted codeword is
c=(oc4, a, &, o, &, a Q).
Suppose that the received data r; without erasure:
r3=(0(5, a, &, o', &, o Q).

First, we get the modified syndromes T3 = S; =
a’,T, =S, =a3T; =S3=a’,T, =S, = a®.
Then, the error-locator polynomial can be obtained
0(z) =1+a’z+ az? using CF algorithm as
shown in Tab.4.

Now, the decoding fails since ofx) has no root
over [Fps.

Comparing with the transmitted codeword ¢, the
received data r; has 3 errors, which is out of the
correctable range.

Example 4. In Example 1 we saw that the
transmitted codeword is

c=(a4, a, &, o, 0[5’ a, ).

Suppose that the received data ry contains two

erasures:

Table 4. The process of the CF algorithm of Example 3.

k R®(z) b® | g (z) PW(z)
a1t Szt +adz P+ abz73| — - 1
+atzt+ X278
0 aSz '+ adz?+adz73 - - 1
+abz 4+ X z75
1| a%z%+a*z3+Xx-27¢ | z z+as
2 X-z72 a z zZ2+ad5z+a
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I‘4=(f; a, a4a 0,’5, f; a, a)v

where findicates an erasure. The erasure-locators are
¥=1and %=d and 7(2) = (1 + 2)(1 + a*2).

First, we get the modified syndromes
T,=0T,=1T; =T, =« Then, the
error-locator ~ polynomial can be  obtained
0(z) =14z using CF algorithm as shown in
Tab.5.

The error-locator is determined as X =1. We
can get Y(X,=1) =0, where
Y(2) = 0(2)t(2) =(1+2)*(L +a*). So, the
decoding fails since the denominator of its error
value is zero.

Comparing with the transmitted codeword ¢, the
received data r; has 3 errors and 2 erasures, which
is out of the correctable range.

Table 5. The process of the CF algorithm of Example 4.

k RM(z) b® | a®(z) P®(z)
l+azl+az2+X| - - 1
AT
-z
az ' +az P+ X - - 1
0 -3
-z
1 X-z7? a at+z z+1

3.2 Data with undetected error

Assume the codeword c is transmitted, and the
data r is received. When the received data r contains
many errors and erasures, it is not in the correctable
range of c. However, r maybe more closed to
another codeword ¢, even in the correctable range of
¢. That is to say, r is decoded to ¢ The errors and
erasures of r cannot be corrected correctly, and
cannot be detected because the decoding process
ends successfully. The received data r is the data
with undetected errors.

Example 5. In Example 1 we saw that the

transmitted codeword is
c=(d, &, &, &, &, a a

Suppose that the received data rs contains two

erasures:
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I'5=(f; IS a4a asv a4a a, a)a

where £ indicates an erasure. The erasure-locators
are Y=1 and Y=aqa, and
t(2)=1+2)(1 + az).

First, we get the modified syndromes
T,=a,T,=1,T;=a’T,=a Then, the
obtained

error-locator ~ polynomial can  be

0(z) = 14 a3z using CF algorithm as shown in
Tab.6.

The error-locator is determined as
X;=(a*)™1 =q3. Then, the error value is
_ _ 6
€j, = & and the erasure values are fi1 = a” and

fi1 =1 So, the decoded data is

= (0,0,a* a% a* a,a) + (a®1,0,2,0,0,0)
= (ab1,a% ab a* a,a).

The decoding process succeeds but the decoded
data is not the codeword c¢. Comparing with the
transmitted codeword ¢, the received data rs has 3
errors and 2 erasures, which is out of the correctable

range.

Table 6. The process of the CF algorithm of Example 5.

k R (2) p&) a® ©) P(k)(z)
a1+ aSz7t +az? - - 1
+X-z73
0 Szt +az?+ X - - 1
-3
-z
1 X z7? a® z+a? z+ad

IV. Simulation result

We also simulate the BM algorithm and the CF
algorithm for a [7,3] RS code over [F3 with any
number of errors and erasures. In the correctable
range, the CF algorithm was verified theoretically
that it works exactly the same as the BM
algorithm™'®, and we also proved this by
simulation. To the best of our knowledge, there is
no theoretical result on the uncorrectable range.

Here, we only list some cases that are out of the

correctable ranges. The simulation results for the
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BM algorithm and the CF algorithm are shown in
Tab.7 and Tab.8, respectively. In the uncorrectable
range, the received data cannot be decoded
successfully (uncorrectable error) or be decoded to
other codewords (undetected error). For these
received data, their error-locator polynomial o(z)
cannot be obtained correctly. By simulation, we get
that o(z) obtained by BMA and CFA are not always
the same, which may lead to different flows in the
decoding process. We count the number of failures
that occurred in Step C, D, or E. The reasons why
these steps fail to decode are given in subsection
2.1. We also count the number of undetected errors.
Tab.7 and Tab.8 verify that the result of the
decoding process is the same, although the obtained
o(z) is different in Step C. Therefore, we can get
that the BM algorithm and the CF algorithm also
work exactly the same even in the uncorrectable

Table 7. The results of decoding algorithms using
BMA for [7,3] RS codes in some uncorrectable ranges.

No. of| NO D e ey Uindetected
eraéure er(;(f)r Total (S]?eI:\SAC) algorithm algoritli]m error
(Step D) | (Step E)
0 3135 7 28 - -
4 | 35 7 28 - -
! 2 [ 105 105 - - -
3 1140 140 - - -
2 2 1210 42 - 168 -
3 1210 112 - 50 48
3 1 1140 140 - - -
2 210 170 - 20 20
4 1 |105 41 - - 64
5 0 | 21 21 - - -

Table 8. The results of decoding algorithms using
CFA for [7,3] RS codes in some uncorrectable ranges.

No. of No. Decodiéﬁ_ failuu'eFin Undetectod
er:éu(r)e of |Totall CFA algorliet:lr]lm algg?ii:lzlm neggit
error (Step C) (Step D) | (Step E)

0 3 135 7 28 - -
4 | 35 7 28 - -
| 2 |105| 105 - - -
3 | 140 | 140 - - -
) 2 |210 42 - 168 -
3 1210 112 - 50 48
1 | 140 | 140 - - -
3 2 210 170 - 20 20
4 1 {105 41 - - 64
5 0 | 21 21 - - -

range.

V. Conclusion

We review the hard-decision decoding process of
RS code with errors and erasures. As one step of the
decoding process, BM and CF algorithms are
discussed in detail, which is to find the error-locator
polynomials. We also verify the BM and CF
algorithms work exactly the same by simulation.
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