비지상네트워크에서 광대역 밀리미터파를 활용한 유니버셜 공간-주파수 분할 다중접속

김종현•, 김광순

Universal Spatio-Frequency Division Multiple Access using mmWave in Non-Terrestrial Networks

Jonghyun Kim[•], Kwang Soon Kim[°]

요 약

본 논문에서는 UAV 기지국의 비지상네트워크에서 밀리미터파 다중입출력 채널을 통해 상향링크 군통신 서비스를 지원하기 위해서 유니버셜 공간-주파수 분할 다중접속 웨이브폼을 제안하며 USFDMA는 공간-주 파수 필터 및 시간 축 윈도우를 활용함으로써 기존의 MIMO-OFDMA 웨이브폼 대비 이동성에 의한 동기 오차에 강인하고 높은 주파수 효율을 얻을 수 있어 광대역 대용량 서비스에 적합함을 보였다.

Key Words : Millimeter wave, NTN, UAV, Uplink MU-MIMO, waveform.

ABSTRACT

In this paper, we proposed USFDMA waveform using mmWave for a non-terrestrial network to support an uplink sporadic military service. The USFDMA waveform has robustness to sync errors of mobile users because of a spatio-frequency filter and a time-domain window. We also demonstrated spectral efficiency performance of the USFDMA compared to the conventional MIMO-OFDMA based on an UAV millimeter channel environment.

I.서 론

군통신 서비스는 군 지휘통제 시스템에서 무선으로 실시간 전장상황을 중계하기 위해서 필수적이며, 무인 항공기(unmanned aerial vehicle, UAV)를 활용한 비 지상네트워크(non-terrestrial network, NTN)의 공중 중계체제는 네트워크 인프라와 지형의 제약 없이도 유연하게 구축될 수 있다. 실시간 상황 중계를 위한 군통신 서비스는 고신뢰 저지연 통신(ultra-reliable low-latency communication, URLLC)의 요구조건을 만족시킬 수 있어야 하며, 사물인터넷 (Internet of Things, IoT) 및 혼합현실(mixed reality, MR) 등의 새로운 지능형 서비스들이 적용됨에 따라서^[1], 대용량 의 데이터 전송 역시 동시에 요구된다.

UAV 기지국 기반의 비지상네트워크에서 대용량 서비스를 지원하기 위하여, 다수의 다중입출력 (multiple-input multiple-output, MIMO) 시스템과 함 께 밀리미터파(millimeter wave, mmWave)의 광대역 을 활용할 수 있으며, 이를 위해서는 밀리미터파가 적 용된 UAV에서의 채널 모델 연구가 필요하고^[2,3], 이 를 바탕으로 다중접속 및 물리계층 기술이 개발되어 야 한다. 특히, 기지국과 단말이 모두 이동성을 갖는 경우의 상향링크 통신에서 발생하는 사용자 단말 간 의 동기오차 문제가 함께 해결되어야 한다. 산발적인 데이터 전송이 발생하는 군통신 서비스를 URLLC의 통신 요구조건을 만족시키면서도 자원 효율적으로 지원 하기 위해서 [4]와 같은 무허가 다중 접속 방식을 적용 할 수 있으며, 동기오차 문제를 해결하기 위해서 유니버 셜 공간 주파수 다중접속(universal spatio-frequency division multiple access, USFDMA) 방식의 웨이브 폼 기술을 적용할 수 있으나¹⁵¹, 이를 광대역의 밀리미 터파 다중입출력 채널에 적용하고 검증하기 위한 연 구가 추가적으로 필요하다.

본 논문에서는 비지상네트워크 시스템에서 밀리미 터파 및 다수의 다중입출력 안테나를 활용하는 UAV 기지국 기반으로 대용량 및 URLLC 요구조건을 갖는 군통신 서비스를 위해서 USFDMA 웨이브폼을 제안 하며, MIMO-OFDMA (orthogonal frequncy division multiple access) 웨이브폼과의 비교 시뮬레이션을 밀

[※] 본 연구는 방위사업청과 국방과학연구소가 지원하는 미래전투체계 네트워크기술 특화연구센터 사업의 일환으로 수행되었습니 다.(UD190033ED)

[•] First Author: (ORCID:0000-0001-9432-2972)School of Electrical and Electronic Engineering, Yonsei University, jonghyun.kim@yonsei.ac.kr, 학생(박사과정), 학생회원

Corresponding Author: (ORCID:0000-0002-5706-174X)School of Electrical and Electronic Engineering, Yonsei University, ks.kim@yonsei.ac.kr, 정교수, 종신회원
노 문법호: 202200.215 A LUL Descined September 20, 2022; Devised September 21, 2022; Accented September 21, 2022

논문번호: 202209-215-A-LU, Received September 20, 2022; Revised September 21, 2022; Accepted September 21, 2022

리미터파 다중입출력 채널 환경에서 수행함으로써 주 파수 효율성 개선을 보였다.

Ⅱ. 밀리미터파를 활용한 NTN 시스템 모델

본 논문에서는 그림 1과 같이 밀리미터파 대역을 통해서 상향링크 URLLC 군통신 서비스를 지원하기 위한 비지상네트워크 통신 시스템을 가정한다. UPA(uniform planar array) 형태의 안테나를 갖는 UAV 기지국과 단일 안테나를 갖는 다수의 사용자 단 말과 셀에 존재하며, 사용자 단말은 이동성을 갖는 상 태에서 산발적으로 상향링크 URLLC 군통신 데이터 를 UAV 기지국으로 전송하고, UAV 기지국에서는 셀 커버리지에 균등한 수신 빔포밍을 하여 상향링크 신호가 수신되면 웨이브폼 복조 및 웨이브폼 복조 이 후에 주파수 영역에서 수신 MIMO 결합(combining) 을 수행하여 데이터를 복조한다.

그림 1. 밀리미터파 대역을 활용하여 상향링크 군통신을 지 원하기 위한 UAV 기반 NTN 시스템 Fig. 1. UAV-based NTN for uplink military service using a mmWave carrier.

Ⅲ. USFDMA 웨이브폼

앞선 시스템 모델에서 USFDMA 웨이브폼을 사용 하면 그림 2와 같은 공간 주파수 도메인에서의 다중 사용자 자원할당에 맞춘 필터와 시간 도메인에서의 윈도우를 통해서 데이터 신호 품질을 떨어뜨리는 간 섭을 낮출 수 있다는 장점이 있다. 특히 UAV 기반의 NTN에서는 사용자 단말 별로 이동성에 의한 동기오 차가 제각각 존재하며 수신단에서는 이를 알 수 없으 므로, CP(cyclic prefix) 제거 및 FFT (fast Fourier transform)의 웨이브폼 복조 과정에서 FFT 사이즈 제 한을 이탈하는 신호 손실과 이탈된 신호가 인접한 다 중입출력 신호에 발생시키는 간섭을 시간 축 윈도우 를 통해서 방지할 수 있다.

그림 2. USFDMA 웨이브폼의 공간-주파수 필터 및 시간 축 윈도우. Fig. 2. The spatio-frequency filter and time domain window of USFDMA waveform.

Ⅳ. 밀리미터파 UAV-BS 채널 환경

본 논문에서는 제안하는 USFDMA 웨이브폼의 성 능 시뮬레이션을 위하여 밀리미터파 대역의 채널환경 을 3GPP TR 38.901⁶⁰의 규격과 호환되는 QuaDRiGa 소프트웨어를 사용하여^[7], 네트워크 구성 및 셀 영역 에 따른 수신 빔포밍 이득을 그림 3과 같이 얻었다. 채널 환경 시나리오는 3GPP의 RMa(rural macrocell) 의 대규모 채널 페이딩 (large scale fading) 파라미터 들을 사용하였고, 3GPP TR 36.777^[8]에 따라 Rician K-factor를 15dB로 설정하였다. 채널 환경의 중심 주 파수는 28GHz이며, UAV-BS의 고도는 100m이고 사 용자 단말은 1-2m 높이를 가지며 120m 반경 내부에 존재한다. UAV 기지국의 수신 안테나는 직사각형 형 태의 UPA로 가로 4줄 및 세로 4줄로 정렬되어 배치 되는 이중 편파(dual-polarization) 안테나들로 구성되 어있으며 16개의 RF (radio frequency) 신호 체인을 갖도록 설정하였다. 그림 3에서 지면의 수신 빔포밍 이득은 셀 커버리지 내의 단말들이 동일한 전력으로 송신하였을 때 상대적인 수신 SNR(signal-to-noise ratio)의 차이를 발생시키며, 그림과 같이 셀 커버리지

그림 3. UAV-BS 기반 밀리미터파 채널의 네트워크 구성 Fig. 3. Network layout of the mmWave UAV-based NTN channel.

내의 단말은 동일 전력으로 신호 전송 시에 수신단에 서 최대 30dB에서 약 20dB 사이의 SNR을 달성할 수 있도록 분포한다.

V. 성능 비교 시뮬레이션

본 논문에서 제안하는 USFDMA와 비교대상인 MIMO-OFDMA의 주파수 효율성을 앞선 UAV 기반 의 밀리미터 대역의 채널 환경에서 시뮬레이션하여 그림 4와 같은 결과를 얻었다. 실험에서 사용자 단말 들의 데이터 전송은 5%의 확률로 발생하며 120KHz 의 부반송파 간격을 갖는 1024개의 부반송파를 통해 서 최대 64-QAM (quadrature amplitude modulation) 을 사용하도록 설정하였다. 또한, 발생된 채널의 최대 딜레이인 2us를 고려하여, 동기 기준점에 대해 선행 혹은 후행하는 수신 심볼들의 동기오차는 최대 동기 오차가 Ous에서 1us까지 증가하는 균등분포를 따르도 록 실험하였다. 그림 4의 결과와 같이 동기오차가 없 을 때는 USFDMA 웨이브폼을 사용하는 경우 시간 축 윈도우에 의한 SNR 손해로 MIMO-OFDMA 대비 주파수 효율성의 저하가 발생하지만, 동기오차가 더 크게 발생하게 될수록 제안하는 USFDMA 웨이브폼 은 MIMO-OFDMA 대비 더 높은 주파수 효율성을 달성할 수 있다.

그림 4. USFDMA와 MIMO-OFDMA의 주파수 효율성 비 교 시뮬레이션

Fig. 4. Spectral efficiency performances of the USFDMA and MIMO-OFDMA.

Ⅵ.결론

본 논문에서는 광대역의 밀리미터파 다중입출력 채 널을 갖는 UAV 기반의 NTN에서 기존의 MIMO-OFDMA 웨이브폼과의 비교 시뮬레이션을 통 해서 제안하는 USFDMA가 이동성에 의한 동기오차 에 강인하며 높은 주파수 효율성을 가짐으로써 대용 량 서비스에 적합함을 보였다.

References

 M. Tortonesi, et al., "Leveraging internet of things within the military network environment – Challenges and solutions," in *Proc. IEEE 3rd WF-IoT*, pp. 111-116, Dec. 2016.

(https://doi.org/10.1109/WF-IoT.2016.7845503)

- [2] S. Voh, T. Jung, K. S. Kim, C.-B. Chae, S. B. Um, and J. W. Choi, "UAV channel models: A survey and performance evaluation," *J. KICS*, vol. 43, no. 2, pp. 352-362, Feb. 2018. (http://doi.org/10.7840/kics.2018.43.2.352)
- [3] C. Zhang, W. Zhang, W. Wang, L. Yang, and W. Zhang, "Research challenges and opportunities of UAV millimeter-wave communications," *IEEE Wireless Commun.*, vol. 26, no. 1, pp. 58-62, Feb. 2019. (https://doi.org/10.1109/MWC.2018.1800214)
- [4] K. S. Kim, et al., "Ultrareliable and lowlatency communication techniques for Tactile Internet services," in *Proc. IEEE*, vol. 107, no. 2, pp. 376-393, Feb. 2019. (https://doi.org/10.1109/JPROC.2018.2868995)
- [5] J. Kim and K. S. Kim, "Universal spatiofrequency division multiple access scheme for uplink URLLC in non-terrestrial networks," *J. KICS*, vol. 46, no. 5, pp. 818-820, May 2021. (http://doi.org/10.7840/kics.2021.46.5.818)
- [6] 3GPP; Technical Specification Group Radio Access Network, *Study on channel model for frequencies from 0.5 to 100 GHz*, document TR 38.901, Rev. 17.0.0, 3GPP, Mar. 2022.
- [7] S. Jaeckel, et al., "QuaDRiGa quasi deterministic radio channel generator, user manual and documentation," Fraunhofer Heinrich Hertz Institute, Tech. Rep. v2.6.1, 2021.
- [8] 3GPP; Technical Specification Group Radio Access Network, NR; *Study on Enhanced LTE Support for Aerial Vehicles*, document TR 36.777, Rev. 15.0.0, 3GPP, Dec. 2017.