Best Papers
 Curiosity-Driven TD-MPC with Model-Free Reinfocement Learning Policy 


Vol. 48,  No. 6, pp. 712-721, Jun.  2023
10.7840/kics.2023.48.6.712


PDF Full-Text
  Abstract

TD-MPC, which has the highest performance among recent model-based reinforcement learning algorithms, extracts behaviors from model predictive control and DDPG agents in the learning process. However, the DDPG agent does not apply the extracted behavior to the environment, but only applies the behavior extracted from model predicted control to the environment. In this paper, we propose an enhanced TD-MPC that utilizes a dual policy that applies to the environment by considering both the DDPG agent and model predictive control of TD-MPC. In addition, by encouraging exploration based on curiosity, bias in utilization that can occur when choosing an action between dual policies is addressed. It is confirmed that the algorithm proposed in various environments of the DeepMind Control Suite has higher sample efficiency and higher performance than the existing TD-MPC.

  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.


  Related Articles
  Cite this article

[IEEE Style]

C. Ji, J. Kim, Y. Han, "Curiosity-Driven TD-MPC with Model-Free Reinfocement Learning Policy," The Journal of Korean Institute of Communications and Information Sciences, vol. 48, no. 6, pp. 712-721, 2023. DOI: 10.7840/kics.2023.48.6.712.

[ACM Style]

Chang-Hun Ji, Ju-Bong Kim, and Youn-Hee Han. 2023. Curiosity-Driven TD-MPC with Model-Free Reinfocement Learning Policy. The Journal of Korean Institute of Communications and Information Sciences, 48, 6, (2023), 712-721. DOI: 10.7840/kics.2023.48.6.712.

[KICS Style]

Chang-Hun Ji, Ju-Bong Kim, Youn-Hee Han, "Curiosity-Driven TD-MPC with Model-Free Reinfocement Learning Policy," The Journal of Korean Institute of Communications and Information Sciences, vol. 48, no. 6, pp. 712-721, 6. 2023. (https://doi.org/10.7840/kics.2023.48.6.712)
Vol. 48, No. 6 Index